Câu hỏi Đáp án 2 năm trước 36

Cho số thức \(\alpha \) sao cho phương trình \({2^x} - {2^{ - x}} = 2\cos \left( {\alpha x} \right)\) có đúng 2019 nghiệm thực. Số nghiệm của phương trình \({2^x} + {2^{ - x}} = 4 + 2\cos \left( {\alpha x} \right)\) là: 

A. 2019      

B. 2018    

C. 4037   

D. 4038 

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có: \({2^x} + {2^{ - x}} = 4 + 2\cos \left( {\alpha x} \right) \Leftrightarrow {\left( {{2^{\frac{x}{2}}} - {2^{ - \frac{x}{2}}}} \right)^2} = 4{\cos ^2}\frac{{\alpha x}}{2} \Leftrightarrow \left[ \begin{array}{l}{2^{\frac{x}{2}}} - {2^{ - \frac{x}{2}}} = 2\cos \frac{{\alpha x}}{2}\,\,\left( 1 \right)\\{2^{\frac{x}{2}}} - {2^{ - \frac{x}{2}}} =  - 2\cos \frac{{\alpha x}}{2}\,\,\left( 2 \right)\end{array} \right.\)

Thay \(x = 0\) vào phương trình (1) ta có \({2^0} - {2^0} = 2\cos 0 \Leftrightarrow 0 = 1\) (Vô lí), kết hợp với giả thiết ta có phương trình (1) có 2019 nghiệm thực khác 0.

Với\({x_0}\) là nghiệm của phương trình (1) \( \Leftrightarrow {2^{\frac{{{x_0}}}{2}}} - {2^{ - \frac{{{x_0}}}{2}}} = 2\cos \frac{{\alpha {x_0}}}{2} \Leftrightarrow {2^{\frac{{\left( { - {x_0}} \right)}}{2}}} - {2^{\frac{{ - \left( { - {x_0}} \right)}}{2}}} =  - 2\cos \frac{{\alpha \left( { - {x_0}} \right)}}{2} \Rightarrow  - {x_0}\) là nghiệm của phương trình (2).

Thay \(x =  - {x_0}\) vào phương trình (1) ta có:

\(\begin{array}{l} \Leftrightarrow {2^{ - \frac{{{x_0}}}{2}}} - {2^{\frac{{{x_0}}}{2}}} = 2\cos \frac{{\alpha \left( { - {x_0}} \right)}}{2} = 2\cos \frac{{\alpha {x_0}}}{2} = {2^{\frac{{{x_0}}}{2}}} - {2^{\frac{{ - {x_0}}}{2}}}\\ \Leftrightarrow {2.2^{\frac{{{x_0}}}{2}}} = {2.2^{\frac{{ - {x_0}}}{2}}} \Leftrightarrow {2^{\frac{{{x_0}}}{2} + 1}} = {2^{\frac{{ - {x_0}}}{2} + 1}} \Leftrightarrow \frac{{{x_0}}}{2} + 1 =  - \frac{{{x_0}}}{2} + 1 \Leftrightarrow {x_0} = 0\,\,\left( {vo\,\,li\,\,do\,\,{x_0} \ne 0} \right)\end{array}\)

\( \Rightarrow  - {x_0}\) không là nghiệm của phương trình (1), điều đó đảm bảo mọi nghiệm của phương trình (2) không trùng với nghiệm của phương trình (1).

Do đó phương trình (2) cũng có 2019 nghiệm.

Vậy phương trình ban đầu có 2019.2 = 4038 nghiệm

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng 

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng 

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Hàm số nào dưới đây có đồ thị như hình vẽ? 

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)? 

Xem lời giải » 2 năm trước 42
Câu 5: Trắc nghiệm

Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng: 

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng 

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\) 

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho khối chóp \(SABCD\) có đáy \(ABCD\) là hình thoi tâm \(O,\;AB = a,\;\angle BAD = {60^0},\;SO \bot \left( {ABCD} \right)\) và mặt phẳng \(\left( {SCD} \right)\) tạo với mặt đáy một góc bằng \({60^0}.\) Thể tích khối chóp đã cho bằng: 

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Cho hình trụ \(\left( T \right)\) có chiều cao bằng 2a. Hai đường tròn đáy của \(\left( T \right)\) có tâm lần lượt là O và \({O_1}\) và bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm \({O_1}\) lấy điểm B sao cho \(AB = \sqrt 5 a\). Thể tích khối tứ diện \(O{O_1}AB\) bằng:

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Với các số \(a,\;b > 0\) thỏa mãn \({a^2} + {b^2} = 6ab,\) biểu thức \({\log _2}\left( {a + b} \right)\) bằng: 

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Trong không gian \(Oxyz,\) gọi \(d\) là đường thẳng qua \(A\left( {1;\;0;\;2} \right)\)  cắt và vuông góc với đường thẳng \({d_1}:\;\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 5}}{{ - 2}}.\) Điểm nào dưới đây thuộc \(d?\) 

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {3;1; - 3} \right),\,\,B\left( {0; - 2;3} \right)\) và mặt cầu \(\left( S \right):\,\,{\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 1\). Xét điểm M thay đổi luôn thuộc mặt cầu \(\left( S \right)\), giá trị lớn nhất của \(M{A^2} + 2M{B^2}\) bằng:

Xem lời giải » 2 năm trước 40
Câu 13: Trắc nghiệm

Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là: 

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{x + 3}}{{{x^2} + 3x + 2}}\) là: 

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Giá trị lớn nhất của hàm số \(f\left( x \right) = \dfrac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn \(\left[ {1;\;3} \right]\) bằng: 

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »