Cho tứ diện ABCD có tam giác ABD đều là cạnh bằng 2, tam giác ABC vuông tại B, \(BC = \sqrt 3 \). Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng \(\frac{{\sqrt {11} }}{2}\). Khi đó độ dài cạnh CD là
A. 2
B. 1
C. \(\sqrt 3 \)
D. \(\sqrt 2 \)
Lời giải của giáo viên
Dựng E sao cho ABCE là hình bình hành như hình vẽ.
Ta có: AB // CE
\( \Rightarrow AB//\left( {CDE} \right) \supset CD \Rightarrow d\left( {AB;CD} \right) = d\left( {AB;\left( {CDE} \right)} \right) = d\left( {M;\left( {CDE} \right)} \right)\) với M là trung điểm của AB.
Gọi N là trung điểm của CE.
Tam giác ABD đều \( \Rightarrow MD \bot AB\)
ABCE là hình bình hành có \(\angle ABC = {90^0}(gt) \Rightarrow ABCE\) là hình chữ nhật. (dhnb)
\(\begin{array}{l}
\Rightarrow MN//BC,BC \bot AB \Rightarrow MN \bot AB\\
\Rightarrow AB \bot \left( {AND} \right) \Rightarrow CE \bot \left( {AND} \right)
\end{array}\)
Trong (MND) kẻ \(MH \bot DN\) ta có:
\(\left\{ {\begin{array}{*{20}{l}}
{MH \bot DN}\\
{MH \bot CE}
\end{array}} \right. \Rightarrow MH \bot \left( {CDE} \right)\)
\( \Rightarrow d\left( {M;\left( {CDE} \right)} \right) = MH = \frac{{\sqrt {11} }}{2}\)
Tam giác ABD đều cạnh \(2 \Rightarrow DM = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \)
Ta có: \(MN = BC = \sqrt 3 \Rightarrow \Delta MND\) cân tại \(M \Rightarrow H\) là trung điểm của ND.
Xét tam giác vuông MNH có \(NH = \sqrt {M{N^2} - M{H^2}} = \sqrt {3 - \frac{{11}}{4}} = \frac{1}{2} \Rightarrow ND = 2NH = 1\)
Ta có: \(CE \bot \left( {MND} \right) \Rightarrow CE \bot DN \Rightarrow \Delta CDN\) vuông tại \(N \Rightarrow CD = \sqrt {D{N^2} + C{N^2}} = \sqrt {1 + 1} = \sqrt 2 \)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số thực a dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục Ox mà cắt đường thẳng \(y = {4^x},y = {a^x}\), trục tung lần lượt tại M, N và A thì AN = 2AM. Giá trị của a bằng
Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn \(IM = \frac{{3R}}{2}\). Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng \(60^0\). Độ dài đoạn thẳng AB bằng
Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) là
Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên R. Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng
Số có giá trị nguyên cảu tham số m thuộc đoạn [-2019;2] để phương trình \(\left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2x - m\) có đúng hai nghiệm thực là
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và \(AB' \bot BC'\). Tinh thể tích V của khối lăng trụ đã cho
Cho tứ diện ABCD có AC = 3a, BD = 4a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SA \bot \left( {ABC} \right)\), SA = 3a. Thể tích V của khối chóp S.ABCD là
Cho cấp số nhân \((u_n)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4\). Giá trị của \(u_1\) là
Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD
Cho khối nón có bán kính đáy là r, chiều cao h. Thể tích V của khối nón đó là :
Cho hình lập phương ABCD.A’B’C’D’. Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh A, B, D, A’, B’, D’?
Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’ = 4a; AC = 2a, BD = a. Thế tích V của khối lăng trụ là
Trong các dãy số sau, dãy số nào là một cấp số cộng?