Câu hỏi Đáp án 2 năm trước 42

Số có giá trị nguyên cảu tham số m thuộc đoạn [-2019;2] để phương trình \(\left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2x - m\) có đúng hai nghiệm thực là

A. 2021

Đáp án chính xác ✅

B. 1

C. 2

D. 2022

Lời giải của giáo viên

verified HocOn247.com

ĐKXĐ: \(x >  - \frac{1}{4}\)

\(\begin{array}{l}
\left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2x - m\\
 \Leftrightarrow \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2\left( {x - 1} \right) + 2 - m\\
 \Leftrightarrow \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right) - 2} \right] = 2 - m
\end{array}\) 

Xét \(x \ge 1 \Rightarrow x - 1 \ge 0\)

Ta có \(\left\{ \begin{array}{l}
4x + 1 \ge 5 \Rightarrow {\log _3}\left( {4x + 1} \right) \ge {\log _3}5\\
2x + 1 \ge 3 \Rightarrow {\log _5}\left( {2x + 1} \right) \ge {\log _5}3
\end{array} \right. \Rightarrow {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) \ge {\log _3}5 + {\log _5}3 \ge 2\)

\(\begin{array}{l}
 \Rightarrow {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) - 2 > 0\\
 \Rightarrow VT \ge 0
\end{array}\)

Xét hàm số \(f\left( x \right) = \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right) - 2} \right]\) ta có:

ĐKXĐ: \(x >  - \frac{1}{4}\)

\(f'\left( x \right) = {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) - 2 + \left( {x - 1} \right)\left[ {\frac{4}{{\left( {4x + 1} \right)\ln 3}} + \frac{2}{{\left( {2x + 1} \right)\ln 5}}} \right] > 0\,\,\forall x \ge 1\) 

Suy ra hàm số đồng biến trên \(\left( {1; + \infty } \right)\)

Xét \( - \frac{1}{4} < x < 1\)

PT: \( \Leftrightarrow \left( {1 - x} \right)\left[ {2 - {{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2 - m\)

Xét hàm số \(f\left( x \right) = \left( {1 - x} \right)\left[ {2 - {{\log }_3}\left( {4x + 1} \right) - {{\log }_5}\left( {2x + 1} \right)} \right]\) ta có:

\(f'\left( x \right) =  - 2 + {\log _3}\left( {4x + 1} \right) + {\log _5}\left( {2x + 1} \right) + \left( {1 - x} \right)\left[ { - \frac{4}{{\left( {4x + 1} \right)\ln 3}} - \frac{2}{{\left( {2x + 1} \right)\ln 5}}} \right] < 0\,\,\forall x \in \left( { - \frac{1}{4};1} \right) \Rightarrow \) Hàm số nghịch biến trên \(\left( { - \frac{1}{4};1} \right)\)

Từ đó ta có BBT của hàm số \(f\left( x \right) = \left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right) - 2} \right]\) như sau:

\(\Rightarrow \) Để phương trình có hai nghiệm thực phân biệt thì \(2 - m > 0 \Leftrightarrow m < 2\)

Kết hợp điều kiện đề bài \(\Rightarrow \left\{ \begin{array}{l}
m \in Z\\
m \in [ - 2019;2)
\end{array} \right. \Rightarrow \) có 2021 giá trị của m thỏa mãn yêu cầu bài toán.

 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số thực a dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục Ox mà cắt đường thẳng \(y = {4^x},y = {a^x}\), trục tung lần lượt tại M, N và A thì AN = 2AM. Giá trị của a bằng

Xem lời giải » 2 năm trước 51
Câu 2: Trắc nghiệm

Cho tứ diện ABCD có tam giác ABD đều là cạnh bằng 2, tam giác ABC vuông tại B, \(BC = \sqrt 3 \). Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng \(\frac{{\sqrt {11} }}{2}\). Khi đó độ dài cạnh CD là

Xem lời giải » 2 năm trước 48
Câu 3: Trắc nghiệm

Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) là

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn \(IM = \frac{{3R}}{2}\). Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng \(60^0\). Độ dài đoạn thẳng AB bằng

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Trong các hàm số sau, hàm số nào đồng biến trên R?

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên R. Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SA \bot \left( {ABC} \right)\), SA = 3a. Thể tích V của khối chóp S.ABCD là

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Cho tứ diện ABCD có AC = 3a, BD = 4a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và \(AB' \bot BC'\). Tinh thể tích V của khối lăng trụ đã cho

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho khối nón có bán kính đáy là r, chiều cao h. Thể tích V của khối nón đó là :

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Cho cấp số nhân \((u_n)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4\). Giá trị của \(u_1\) là

Xem lời giải » 2 năm trước 40
Câu 13: Trắc nghiệm

Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’ = 4a; AC = 2a, BD = a. Thế tích V của khối lăng trụ là

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Cho hình lập phương ABCD.A’B’C’D’. Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh A, B, D, A’, B’, D’?

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »