Câu hỏi Đáp án 2 năm trước 34

Cho tứ diện \(ABCD\) có tam giác \(ABD\) đều là cạnh bằng \(2\) , tam giác \(ABC\) vuông tại \(B,\,BC = \sqrt {3.} \) Biết khoảng cách  giữa hai đường thẳng chéo nhau \(AB\) và \(CD\) bằng \(\frac{{\sqrt {11} }}{2}\) . Khi đó độ dài cạnh \(CD\) là

A. \(2\) 

B. \(1\)

C. \(\sqrt 3 \) 

D. \(\sqrt 2 \)  

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Dựng E sao cho ABCE là hình bình hành như hình vẽ.

Ta có: AB // CE

\( \Rightarrow AB//\left( {CDE} \right) \supset CD \Rightarrow d\left( {AB;CD} \right) = d\left( {AB;\left( {CDE} \right)} \right) = d\left( {M;\left( {CDE} \right)} \right)\) với M là trung điểm của AB.

Gọi N là trung điểm của CE.

Tam giác ABD đều \( \Rightarrow MD \bot AB\)

ABCE là hình bình hành có \(\angle ABC = {90^0}\,\,\left( {gt} \right) \Rightarrow ABCE\) là hình chữ nhật. (dhnb)

\( \Rightarrow MN//\,BC,\,\,BC \bot AB \Rightarrow MN \bot AB\)

\( \Rightarrow AB \bot \left( {AND} \right) \Rightarrow CE \bot \left( {AND} \right)\)

Trong \(\left( {MND} \right)\) kẻ \(MH \bot DN\) ta có : \(\left\{ \begin{array}{l}MH \bot DN\\MH \bot CE\end{array} \right. \Rightarrow MH \bot \left( {CDE} \right)\).

\( \Rightarrow d\left( {M;\left( {CDE} \right)} \right) = MH = \frac{{\sqrt {11} }}{2}\).

Tam giác ABD đều cạnh 2 \( \Rightarrow DM = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \).

Ta có \(MN = BC = \sqrt 3  \Rightarrow \Delta MND\) cân tại M \( \Rightarrow H\) là trung điểm của ND.

Xét tam giác vuông MNH có \(NH = \sqrt {M{N^2} - M{H^2}}  = \sqrt {3 - \frac{{11}}{4}}  = \frac{1}{2} \Rightarrow ND = 2NH = 1\).

Ta có \(CE \bot \left( {MND} \right) \Rightarrow CE \bot DN \Rightarrow \Delta CDN\) vuông tại N \( \Rightarrow CD = \sqrt {D{N^2} + C{N^2}}  = \sqrt {1 + 1}  = \sqrt 2 \).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) , cạnh \(SA\) vuông góc với mặt phẳng đáy, \(SB = a\sqrt 3 .\) Tính góc giữa \(SC\) và mặt phẳng đáy. 

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Chị Hân hàng tháng gửi vào ngân hàng \(1.500.000\) đồng, với lãi suất \(0,8\% \) một tháng. Sau 1 năm chị Hân rút cả vốn lẫn lãi về mua vàng thì số chỉ vàng mua được ít nhất là bao nhiêu? Biết giá vàng tại thời điểm mua là \(3.648.000\) đồng/chỉ.

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Hàm số \(y = f\left( x \right) =  - \frac{{{x^4}}}{4} + 2{x^2} + 6\) có bao nhiêu điểm cực đại? 

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên \(\left[ { - 4;\,4} \right]\) là

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Tìm hệ số của \({x^4}\) trong khai triển \({\left( {1 + x + 4{x^2}} \right)^{10}}\) thành đa thức. 

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Cho hàm số \(y = \frac{3}{{2 - x}}\). Chọn phát biểu đúng? 

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = {x^3} - 5{x^2} + 2\) có đồ thị \(\left( C \right)\) . Có bao nhiêu tiếp tuyến của \(\left( C \right)\) đi qua điểm \(A\left( {0;2} \right)?\) 

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Cho hình chóp \(SABC\) có đáy \(ABC\) là tam giác đều cạnh \(a.\) Biết \(SA \bot \left( {ABC} \right)\) và \(SA = 2a.\) Mặt phẳng \(\left( P \right)\) qua \(B\) vuông góc với \(SC.\) Diện tích thiết diện của hình chóp cắt bởi mặt phẳng \(\left( P \right)\) là:

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,BC = 2a,\,AC' = 3a.\) Điểm \({\rm N}\) thuộc cạnh \(BB'\) sao cho \(BN = 2NB',\) điểm \(M\) thuộc cạnh \(DD'\) sao cho \(D'M = 2MD.\) Mặt phẳng \(\left( {A'M{\rm N}} \right)\) chia hình hộp chữ nhật làm hai phần, tính thể tích phần chứa điểm \(C'.\)

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Trong các mệnh đề sau mệnh đề nào sai?

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Với giá trị nào của tham số \(m\) để đồ thị hàm số có hai điểm cực trị \(A,\;B\) sao cho \(AB = \sqrt {20} ?\)

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Cho \({\log _2}5 = a\) và \({\log _3}5 = b.\) Khi đó, \({\log _6}5\) tính theo \(a\) và \(b\) là: 

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hình chóp tứ giác đều \(S.ABCD,\) cạnh đáy có độ dài \(r\sqrt 2 ,\) chiều cao \(h\) . Xét hình nón \(\left( {\rm N} \right)\) ngoại tiếp khối chóp. Gọi \({V_1},\,{V_2}\) lần lượt là thể tích hình nón \(\left( {\rm N} \right)\) và thể tích khối cầu nội tiếp \(\left( {\rm N} \right)\) . Tìm tỉ số \(\frac{h}{r}\) sao cho \(\frac{{{V_1}}}{{{V_2}}}\) đạt giá trị nhỏ nhất?

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Phương trình \({\sin ^2}x - \left( {2 + m} \right)\,\sin x + 2m = 0\) có nghiệm khi tham số \(m\) thỏa mãn điều kiện 

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Cho hình nón có diện tích xung quanh bằng \(3\pi {a^2}\) và bán kính đáy bằng \(a.\) Tính tan của góc giữa một đường sinh và mặt đáy của nón. 

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »