Câu hỏi Đáp án 2 năm trước 39

Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho BC=3BM, \(BD=\frac{3}{2}BN\), AC=2AP. Mặt phẳng \(\left( MNP \right)\) chia khối tứ diện ABCD thành 2 phần có thể tích là \({{V}_{1}},{{V}_{2}}\). Tính tỉ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\)?

A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{19}}\)

Đáp án chính xác ✅

B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{{19}}\)

C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{15}}{{19}}\)

D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{13}}\)

Lời giải của giáo viên

verified HocOn247.com

Trong \(\left( BCD \right)\) gọi \(E=MN\cap CD\).

Trong \(\left( ACD \right)\) gọi \(Q=AD\cap PE\).

Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \(\left( MNP \right)\) là tứ giác MNQP.

Áp dụng định lí Menelaus trong tam giác BCD ta có:

\(\frac{MB}{MC}.\frac{EC}{ED}.\frac{ND}{NB}=1\Rightarrow \frac{1}{2}.\frac{EC}{ED}.\frac{1}{2}=1\Leftrightarrow \frac{EC}{ED}=4\).

Áp dụng định lí Menelaus trong tam giác ACD ta có:

\(\frac{PA}{PC}.\frac{EC}{ED}.\frac{QD}{QA}=1\Rightarrow 1.4.\frac{QD}{QA}=1\Rightarrow \frac{QD}{QA}=\frac{1}{4}\)

Ta có: \({{V}_{ABMNQ}}={{V}_{ABMN}}+{{V}_{AMNP}}+{{V}_{ANPQ}}\)

+) \(\frac{{{S}_{BMN}}}{{{S}_{BCD}}}=\frac{BM}{BC}.\frac{BN}{BD}=\frac{1}{3}.\frac{2}{3}=\frac{2}{9}\Rightarrow \frac{{{V}_{ABMN}}}{{{V}_{ABCD}}}=\frac{2}{9}\)

+) \(\frac{{{V}_{AMNP}}}{{{V}_{AMNC}}}=\frac{AP}{AC}=\frac{1}{2}\Rightarrow {{V}_{AMNP}}=\frac{1}{2}{{V}_{AMNC}}\)

\(\frac{{{S}_{NMC}}}{{{S}_{DBC}}}=\frac{d\left( N;BC \right).MC}{d\left( D;BC \right).BC}=\frac{NB}{DB}.\frac{MC}{BC}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)

\(\Rightarrow \frac{{{V}_{AMNC}}}{{{V}_{ABCD}}}=\frac{4}{9}\Rightarrow {{V}_{AMNP}}=\frac{2}{9}{{V}_{ABCD}}\)

+) \(\frac{{{V}_{APQN}}}{{{V}_{ACDN}}}=\frac{AP}{AC}.\frac{AQ}{AD}=\frac{1}{2}.\frac{4}{5}=\frac{2}{5}\Rightarrow {{V}_{APQN}}=\frac{2}{5}{{V}_{ACDN}}\)

\(\frac{{{S}_{CND}}}{{{S}_{CBD}}}=\frac{DN}{DB}=\frac{1}{3}\Rightarrow \frac{{{V}_{ACDN}}}{{{V}_{ABCD}}}=\frac{1}{3}\Rightarrow {{V}_{APQN}}=\frac{2}{15}{{V}_{ABCD}}\)

\(\Rightarrow {{V}_{ABMNQ}}={{V}_{ABMN}}+{{V}_{AMNP}}+{{V}_{ANPQ}}=\frac{2}{9}{{V}_{ABCD}}+\frac{2}{9}{{V}_{ABCD}}+\frac{2}{15}{{V}_{ABCD}}=\frac{26}{45}{{V}_{ABCD}}\).

Gọi \({{V}_{1}}={{V}_{ABMNQ}},{{V}_{2}}\) là thể tích phần còn lại \(\Rightarrow \frac{{{V}_{1}}}{{{V}_{2}}}=\frac{26}{19}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:

Xem lời giải » 2 năm trước 42
Câu 5: Trắc nghiệm

Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( 10;1 \right),B\left( 3;-2;0 \right),C\left( 1;2;-2 \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến \(\left( P \right)\) lớn nhất biết rằng \(\left( P \right)\) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là:

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh \({{S}_{xq}}\) của hình nón là:

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -10;10 \right]\) để bất phương trình sau nghiệm đúng \(\forall x\in \mathbb{R}:{{\left( 6+2\sqrt{7} \right)}^{x}}+\left( 2-m \right){{\left( 3-\sqrt{7} \right)}^{x}}-\left( m+1 \right){{2}^{x}}\ge 0\)?

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho mặt phẳng (P) đi qua các điểm \(A\left( { - 2;0;0} \right),B\left( {0;3;0} \right),C\left( {0;0; - 3} \right)\). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau:

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-1 \right){{\left( {{x}^{2}}-1 \right)}^{3}},\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là:

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {5^{2x}}\)?

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hai tích phân \(\int\limits_{-2}^{5}{f\left( x \right)dx}=8\) và \(\int\limits_{5}^{-2}{g\left( x \right)dx}=3\). Tính \(I=\int\limits_{-2}^{5}{\left[ f\left( x \right)-4g\left( x \right)-1 \right]dx}\)?

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »