Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho BC=3BM, \(BD=\frac{3}{2}BN\), AC=2AP. Mặt phẳng \(\left( MNP \right)\) chia khối tứ diện ABCD thành 2 phần có thể tích là \({{V}_{1}},{{V}_{2}}\). Tính tỉ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\)?
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{19}}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{{19}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{15}}{{19}}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{13}}\)
Lời giải của giáo viên
Trong \(\left( BCD \right)\) gọi \(E=MN\cap CD\).
Trong \(\left( ACD \right)\) gọi \(Q=AD\cap PE\).
Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \(\left( MNP \right)\) là tứ giác MNQP.
Áp dụng định lí Menelaus trong tam giác BCD ta có:
\(\frac{MB}{MC}.\frac{EC}{ED}.\frac{ND}{NB}=1\Rightarrow \frac{1}{2}.\frac{EC}{ED}.\frac{1}{2}=1\Leftrightarrow \frac{EC}{ED}=4\).
Áp dụng định lí Menelaus trong tam giác ACD ta có:
\(\frac{PA}{PC}.\frac{EC}{ED}.\frac{QD}{QA}=1\Rightarrow 1.4.\frac{QD}{QA}=1\Rightarrow \frac{QD}{QA}=\frac{1}{4}\)
Ta có: \({{V}_{ABMNQ}}={{V}_{ABMN}}+{{V}_{AMNP}}+{{V}_{ANPQ}}\)
+) \(\frac{{{S}_{BMN}}}{{{S}_{BCD}}}=\frac{BM}{BC}.\frac{BN}{BD}=\frac{1}{3}.\frac{2}{3}=\frac{2}{9}\Rightarrow \frac{{{V}_{ABMN}}}{{{V}_{ABCD}}}=\frac{2}{9}\)
+) \(\frac{{{V}_{AMNP}}}{{{V}_{AMNC}}}=\frac{AP}{AC}=\frac{1}{2}\Rightarrow {{V}_{AMNP}}=\frac{1}{2}{{V}_{AMNC}}\)
\(\frac{{{S}_{NMC}}}{{{S}_{DBC}}}=\frac{d\left( N;BC \right).MC}{d\left( D;BC \right).BC}=\frac{NB}{DB}.\frac{MC}{BC}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)
\(\Rightarrow \frac{{{V}_{AMNC}}}{{{V}_{ABCD}}}=\frac{4}{9}\Rightarrow {{V}_{AMNP}}=\frac{2}{9}{{V}_{ABCD}}\)
+) \(\frac{{{V}_{APQN}}}{{{V}_{ACDN}}}=\frac{AP}{AC}.\frac{AQ}{AD}=\frac{1}{2}.\frac{4}{5}=\frac{2}{5}\Rightarrow {{V}_{APQN}}=\frac{2}{5}{{V}_{ACDN}}\)
\(\frac{{{S}_{CND}}}{{{S}_{CBD}}}=\frac{DN}{DB}=\frac{1}{3}\Rightarrow \frac{{{V}_{ACDN}}}{{{V}_{ABCD}}}=\frac{1}{3}\Rightarrow {{V}_{APQN}}=\frac{2}{15}{{V}_{ABCD}}\)
\(\Rightarrow {{V}_{ABMNQ}}={{V}_{ABMN}}+{{V}_{AMNP}}+{{V}_{ANPQ}}=\frac{2}{9}{{V}_{ABCD}}+\frac{2}{9}{{V}_{ABCD}}+\frac{2}{15}{{V}_{ABCD}}=\frac{26}{45}{{V}_{ABCD}}\).
Gọi \({{V}_{1}}={{V}_{ABMNQ}},{{V}_{2}}\) là thể tích phần còn lại \(\Rightarrow \frac{{{V}_{1}}}{{{V}_{2}}}=\frac{26}{19}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( 10;1 \right),B\left( 3;-2;0 \right),C\left( 1;2;-2 \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến \(\left( P \right)\) lớn nhất biết rằng \(\left( P \right)\) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là:
Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh \({{S}_{xq}}\) của hình nón là:
Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:
Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -10;10 \right]\) để bất phương trình sau nghiệm đúng \(\forall x\in \mathbb{R}:{{\left( 6+2\sqrt{7} \right)}^{x}}+\left( 2-m \right){{\left( 3-\sqrt{7} \right)}^{x}}-\left( m+1 \right){{2}^{x}}\ge 0\)?
Cho mặt phẳng (P) đi qua các điểm \(A\left( { - 2;0;0} \right),B\left( {0;3;0} \right),C\left( {0;0; - 3} \right)\). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau:
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-1 \right){{\left( {{x}^{2}}-1 \right)}^{3}},\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là:
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {5^{2x}}\)?
Cho hai tích phân \(\int\limits_{-2}^{5}{f\left( x \right)dx}=8\) và \(\int\limits_{5}^{-2}{g\left( x \right)dx}=3\). Tính \(I=\int\limits_{-2}^{5}{\left[ f\left( x \right)-4g\left( x \right)-1 \right]dx}\)?