Lời giải của giáo viên
Số cách chọn là: 10.8 = 80 (cách).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối lăng trụ tứ giác đều ABCD. A 'B 'C 'D ' có khoảng cách giữa AB và A’D bằng 2, đường chéo của mặt bên bằng 5. Biết AA' > AD. Thể tích lăng trụ là
Biết đồ thị của hàm số \(y = {x^4} - 2m{x^2} + 1\) có ba điểm cực trị \(A\left( {0;1} \right),B,C\). Các giá trị của tham số m để BC = 4 là:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây sai?
Một vật chuyển động với gia tốc \(a\left( t \right) = 6t\left( {m/{s^2}} \right)\). Vận tốc của vật tại thời điểm t = 2 giây là 17 m / s . Quãng đường vật đó đi được trong khoảng thời gian từ thời điểm t = 4 giây đến thời điểm t = 10 giây là:
Đồ thị hình bên là của hàm số nào trong các hàm số dưới đây?
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, \(AB = a,SA = 2a,SA \bot \left( {ABC} \right)\). Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là:
Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x} + \frac{1}{{{x^3}}}\) là:
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 2}}{{x - 1}}\) là
Số nghiệm của phương trình \({\log _3}\left( { - x} \right) + {\log _3}\left( {x + 3} \right) = {\log _3}5\) là:
Thể tích khối tròn xoay được tạo thành khi quay quanh trục Ox hình phẳng (H) được giới hạn bởi các đường \(y=f(x)\) liên tục trên đoạn [a;b] trục Ox và hai đường thẳng x = a, x = b là:
Cho khối lăng trụ tam giác đều ABC.A’B’C’ có chiều cao là a và \(AB' \bot BC'\). Thể tích lăng trụ là
Họ nguyên hàm của hàm số \(f\left( x \right) = {\tan ^2}x\) là
Trong không gian Oxyz, cho \(A\left( {1;2; - 1} \right),B\left( {0;1;0} \right),C\left( {3;0;1} \right)\). Diện tích mặt cầu nhận đường tròn ngoại tiếp tam giác ABC làm đường tròn lớn là:
Trong không gian Oxyz, cho điểm \(M\left( {2017;2018;2019} \right)\). Hình chiếu vuông góc của điểm M trên trục Oz có tọa độ là:
Cho mặt cầu S(O;R) và mặt phẳng \(\left( \alpha \right)\). Biết khoảng cách từ O tới \(\left( \alpha \right)\) bằng d. Nếu d < R thì giao tuyến của mặt phẳng \(\left( \alpha \right)\) với mặt cầu S(O;R) là đường tròn có bán kính bằng