Lời giải của giáo viên
Đặt \(u = {e^x}\), từ điều kiện của x, có \(u \in [2;5]\) và hàm số đã cho thành \(y = \left| {f(u)} \right|,u = {e^x} \in [2;5].\)
\(f(u) = {u^2} - 6u + m,{f'}(u) = 2u - 6,{f'}(u) = 0 \Leftrightarrow u = 3,f(2) = m - 8,f(3) = m - 9,f(5) = m - 5\)
Giá trị lớn nhất của hàm số đã cho trên đoạn [ln2; ln5] thuộc tập hợp
\(A = \left\{ {\left| {m - 8} \right|,\left| {m - 9} \right|,\left| {m - 5} \right|} \right\}.\)
\(\left| {m - 8} \right| = 7 \Leftrightarrow \left[ \begin{array}{l} m = 15 \Rightarrow A = \left\{ {7;6;10} \right\}\\ m = 1 \Rightarrow A = \left\{ {7;8;4} \right\} \end{array} \right..\)
\(\left| {m - 9} \right| = 7 \Leftrightarrow \left[ \begin{array}{l} m = 16 \Rightarrow A = \left\{ {8;7;11} \right\}\\ m = 2 \Rightarrow A = \left\{ {6;7;3} \right\} \end{array} \right..\)
\(\left| {m - 5} \right| = 7 \Leftrightarrow \left[ \begin{array}{l} m = 12 \Rightarrow A = \left\{ {4;3;7} \right\}\\ m = - 2 \Rightarrow A = \left\{ {10;11;7} \right\} \end{array} \right..\)
Vậy giá trị lớn nhất của hàm số đã cho trên đoạn [ln2; ln5] bằng 7 khi m = 2 hoặc m = 12, tức là có hai giá trị m cần tìm.
CÂU HỎI CÙNG CHỦ ĐỀ
Với a là số thực dương tùy ý, \({\log _8}\left( {{a^3}} \right)\) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\). Một vectơ chỉ phương của d là
Cho cấp số nhân (un) với \({u_1} = 2\) và \({u_4} = 16\). Công bội của cấp số nhân đã cho bằng
Trong không gian Oxyz, phương trình mặt phẳng \(\left( P \right)\) qua hai điểm \(A\left( 2;1;-3 \right)\), \(B\left( 3;2;-1 \right)\) và vuông góc với mặt phẳng \(\left( Q \right):x+2y+3z-4=0\) là
Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) cạnh a. Tính diện tích toàn phần của vật thể tròn xoay thu được khi quay tam giác \(A{A}'{C}'\) quanh trục \(A{A}'\).
Cho hình trụ có hai đáy là hình tròn \(\left( O \right)\) và \(\left( {{O}'} \right)\). Trên hai đường tròn \(\left( O \right)\) và \(\left( {{O}'} \right)\) lần lượt lấy hai điểm A, B sao cho góc giữa đường thẳng AB và mặt phẳng chứa đường tròn đáy bằng \({{45}^{\mathrm{o}}}\), khoảng cách giữa đường thẳng AB và trục OO' bằng \(\frac{a\sqrt{2}}{2}\). Biết bán kính đáy bằng a, tính thể tích của khối trụ theo a.
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} - 4x + 8y - 2z + 12 = 0.\) Tâm của (S) có tọa độ là
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = - 1 - 2i là điểm nào dưới đây ?
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(3f\left( x \right) - 16 = 0\) là
Tìm tập xác định D của hàm số \(y = {\left( {2x - 1} \right)^{\frac{1}{3}}}\)
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = ln4, biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ \(x{\rm{ }}\,\left( {0 \le x \le \ln 4} \right)\) ta được thiết diện là hình vuông có cạnh \(\sqrt {x{e^x}} \)
Diện tích xung quanh của hình chóp tứ giác đều có chiều cao h và cạnh đáy bằng 2a là
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn đẳng thức \({\log _3}({\log _2}({e^{2x - y - 1}} - 2x + y + 2)) = {\log _2}({\log _3}( - {x^2} - 4{y^2} + 4xy - 2x + 4y + 2))\)
Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):2x + 3y + 2 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( \alpha \right)?\)
Xét \(I = \int\limits_0^{\frac{\pi }{2}} {\sqrt {2 + \cos x} .\sin x{\rm{d}}x} \), nếu đặt t = 2 + cos x thì I bằng