Câu hỏi Đáp án 2 năm trước 34

Có bao nhiêu giá trị nguyên âm của tham số m để hàm số \(y=\frac{1}{4} x^{4}+m x-\frac{3}{2 x}\) đồng biến trên khoảng \((0;+\infty)\).

A. 2

Đáp án chính xác ✅

B. 0

C. 1

D. 4

Lời giải của giáo viên

verified HocOn247.com

Ta có \(y^{\prime}=x^{3}+m+\frac{3}{2 x^{2}}\)

Để hàm số đồng biến trên \((0;+\infty)\) thì 

\(y^{\prime} \geq 0 \,,\forall x>0 \Leftrightarrow x^{3}+m+\frac{3}{2 x^{2}} \geq 0 \,,\forall x>0 \Leftrightarrow x^{3}+\frac{3}{2 x^{2}} \geq-m \,\forall x>0\)

Đặt \(g(x)=x^{3}+\frac{3}{2 x^{2}} \Rightarrow-m \leq \min\limits _{(0 ;+\infty)} g(x)\)

\(g(x)=x^{3}+\frac{3}{2 x^{2}}=\frac{x^{3}}{2}+\frac{x^{3}}{2}+\frac{1}{2 x^{2}}+\frac{1}{2 x^{2}}+\frac{1}{2 x^{2}}\)

\( \geq 5 \sqrt[5]{\frac{x^{3}}{2} \cdot \frac{x^{3}}{2} \cdot \frac{1}{2 x^{2}} \cdot \frac{1}{2 x^{2}} \cdot \frac{1}{2 x^{2}}}={5\over2}\)

Dấu bằng xảy ra khi \(\frac{x^{3}}{2}=\frac{1}{2 x^{2}} \Rightarrow x^{5}=1 \Leftrightarrow x=1(T M)\)

Do đó: \(\min\limits _{(0 ;+\infty)} g(x)=\frac{5}{2} \Leftrightarrow x=1\)

\(\Rightarrow -m \leq \min\limits _{(0 ;+\infty)} g(x) \Leftrightarrow-m \leq \frac{5}{2} \Leftrightarrow m \geq-\frac{5}{2}\)

Nên các giá trị nguyên âm của m thỏa mãn đề bài là m=-2 và m=-1

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số y=f(x)  liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ:

Có bao nhiêu giá trị nguyên của m để phương trình \(f( \sqrt{1+x}-\sqrt{3-x})=f( \sqrt{|m|+1})\) có nghiệm?

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(S A \perp(A B C D) \text { và } S A=a \sqrt{3}\)  . Khi đó thể tích của hình chóp S.ABCD  bằng:

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Xét tích phân \(\int_{1}^{e} \frac{1}{x} \ln x d x . \text { Nếu đặt } \ln x=t \text { thì } \int_{1}^{e} \frac{1}{x} \ln x d x\) bằng:

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Số tiệm cận của đồ thị hàm số \(y=\frac{2 x-3}{x+1}\)là:

Xem lời giải » 2 năm trước 42
Câu 5: Trắc nghiệm

Cho hình lập phương ABCD. A' B' C' D' cạnh bằng 3a ,\(K \in C C^{\prime} \text { sao cho } C K=\frac{2}{3} C C^{\prime}\). Mặt phẳng \((\alpha)\) qua A,K và song song với \(B'D'\) chia khối lập phương trình hai phần. Tính thể tích phần khối đa diện chứa đỉnh C.

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Diện tích S của hình phẳng giới hạn bởi các đường \(y=4 x^{2}+x, y=-1, x=0 \text { và } x=1\) được tính bởi công thức nào sau đây?

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Cho hàm số y=f(x) có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây là sai?

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho cấp số nhân với \(u_1=3\) và \(u_2 = 9\) . Công bội của cấp số nhân đã cho là:

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Có bao nhiêu cặp số nguyên dương \((x ; y)\, với \,x \leq 2020\) thỏa mãn điều kiện \(\log _{2} \frac{x+2}{y+1}+x^{2}+4 x=4 y^{2}+8 y+1\).

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho điểm \( M(1 ; 2 ; 3) ; N(-1 ; 1 ; 2)\) Phương trình mặt phẳng trung trực của MN là:

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Số giao điểm của đồ thị hàm số \(y=-x^{3}+3 x^{2}-7\) và trục hoành là:

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(f(x)=x^{4}-6 x^{2}-9\) trên đoạn [-1;4] bằng:

Xem lời giải » 2 năm trước 40
Câu 13: Trắc nghiệm

Trong không gian Oxyz , Cho mặt cầu \((S): x^{2}+y^{2}+z^{2}+2 x+2 y-4 z-3=0\). Đường kính của (S) là:

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Xét các số thực a, b thỏa mãn: \(\log _{8}\left(4^{a} . 8^{b}\right)=\log _{4} 16\). Mệnh đề nào dưới đây là đúng?

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(f(x)=e^{2020 x}\).

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »