Lời giải của giáo viên
Ta có: \({{\left( {{a}^{\log x}}+2 \right)}^{\log a}}=x-2\Leftrightarrow {{\left( {{x}^{\log a}}+2 \right)}^{\log a}}=x-2\)
Đặt \(b=\log a\Leftrightarrow a={{10}^{b}}.\) Vì \(a\ge 2\Rightarrow b\ge \log 2>0.\)
Phương trình đã cho trở thành:
\({{\left( {{x}^{b}}+2 \right)}^{b}}=x-2\Leftrightarrow {{\left( {{x}^{b}}+2 \right)}^{b}}+\left( {{x}^{b}}+2 \right)={{x}^{b}}+x\left( * \right).\)
Xét hàm số \(f\left( t \right)={{t}^{b}}+t\) ta có \(f'\left( t \right)=b{{t}^{b-1}}+1>0\Rightarrow \) Hàm số \(y=f\left( t \right)\) đồng biến trên \(\mathbb{R}.\)
Do đó \(\left( * \right)\Leftrightarrow {{x}^{b}}+2=x\Leftrightarrow {{x}^{\log a}}=x-2\left( ** \right).\)
Với \(\log a\ge 1\) ta có đồ thị hàm số như sau:
⇒ Phương trình \(\left( ** \right)\) vô nghiệm.
Với \(\log a<1\) ta có đồ thị hàm số như sau:
⇒ Phương trình \(\left( ** \right)\) có nghiệm ⇒ Thỏa mãn.
\(\Rightarrow \log a<1\Leftrightarrow a<10.\) Kết hợp điều kiện đề bài ta có \(a\in \left\{ 2;3;4;...;9 \right\}.\)
Vậy có 8 giá trị của a thỏa mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \(f'\left( x \right)\) như sau:
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;3 \right)\) và \(B\left( 6;5;5 \right).\) Xét khối nón \(\left( N \right)\) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( N \right)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình dạng 2x+by+cz+d=0. Giá trị của b+c+d bằng
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{4}}-2{{x}^{2}}+3\) trên đoạn \(\left[ 0;2 \right].\) Tổng M+m bằng
Nếu \(\int\limits_{1}^{2}{f\left( x \right)dx=5}\) và \(\int\limits_{2}^{3}{f\left( x \right)dx=-2}\) thì \(\int\limits_{1}^{3}{f\left( x \right)dx}\) bằng
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( 9a \right)\) bằng
Với a là số thực dương tùy ý, \(\sqrt{{{a}^{3}}}\) bằng
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào, trong các khoảng dưới đây?
Trong không gian Oxyz, mặt cầu có tâm là gốc tọa độ O và đi qua điểm \(M\left( 0;0;2 \right)\) có phương trình là:
Nghiệm của phương trình \({{\log }_{2}}\left( 3x \right)=3\) là:
Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;2 \right)\) và \(B\left( 3;1;0 \right).\) Trung điểm của đoạn thẳng AB có tọa độ là
Xét hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}.\) Giá trị lớn nhất của \(\left| 3{{z}_{1}}+{{z}_{2}}-5i \right|\) bằng
Một khối chóp có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối chóp bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?