Lời giải của giáo viên
Đặt \(t={{5}^{x}}>0\). Bất phương trình trở thành: \(\left( t-1 \right)\left( 2t-y \right)\le 0$ hay \(\left( t-1 \right)\left( t-\frac{y}{2} \right)\le 0\,\left( * \right)\)
+) TH1: \(0<\frac{y}{2}\le 1\Leftrightarrow 0<y\le 2\) khi đó \(\left( * \right)\Leftrightarrow \frac{y}{2}\le t\le 1\Leftrightarrow \frac{y}{2}\le {{5}^{x}}\le 1\Leftrightarrow {{\log }_{5}}\frac{y}{2}\le x\le 0\Leftrightarrow x=0\) Có 1 nghiệm nên thoả mãn.
+) TH2: \(\frac{y}{2}>1\Leftrightarrow y>2\) khi đó \(\left( * \right)\Leftrightarrow \frac{y}{2}\ge t\ge 1\Leftrightarrow \frac{y}{2}\ge {{5}^{x}}\ge 1\Leftrightarrow {{\log }_{5}}\frac{y}{2}\ge x\ge 0\). Theo yêu cầu đầu bài có không qua 5 số nguyên x thoả mãn. Vậy x chỉ có thể lấy tối đa từ 0 đến 4 hay
\({{\log }_{5}}\frac{y}{2}\le 4\Leftrightarrow 1<\frac{y}{2}\le {{5}^{4}}=625\Leftrightarrow 2<y\le 1250\).
=>Cả hai trường hợp : \(y=\left\{ 1;2;....;1250 \right\}\) có 1250 số thoả mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Với a là một số thực dương tùy ý, ta có \(\sqrt[5]{a^3}\) bằng
Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \(\left( {{S}_{1}} \right):\,{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=16,\left( {{S}_{2}} \right):\,{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=36\) và điểm \(A\left( 4;0;0 \right)\). Đường thẳng \(\Delta \) di động nhưng luôn tiếp xúc với \(({{S}_{1}})\), đồng thời cắt \(\left( {{S}_{2}} \right)\) tại hai điểm \(B,\,\,C\). Tam giác ABC có thể có diện tích lớn nhất là bao nhiêu?
Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 1;2;4 \right)\) và mặt phẳng \(\left( P \right):2x+2y+z-1=0\). Mặt cầu tâm I và tiếp xúc với mặt phẳng \(\left( P \right)\) có phương trình là:
Phương trình \({{\log }_{2}}\left( 3x+1 \right)=-4\) có tập nghiệm là
Cho hình chóp đều S.ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của các cạnh SA, CD. Biết góc giữa đường thẳng MN với mặt phẳng \(\left( SBD \right)\) bằng \({{30}^{{}^\circ }}\)(như hình vẽ).
Thể tích của khối chóp đều S.ABCD là:
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( {{x}^{2}}+2 \right)\le 3\) là:
Tính \(I = \int\limits_{ - 1}^1 {{x^{2020}}{\rm{d}}x} \)
Trong không gian với hệ toa độ Oxyz, lập phương trình đường thẳng đi qua điểm \(A\left( 0;\ -1;\ 3 \right)\) và vuông góc với mặt phẳng \(\left( P \right): x+3y-1=0\).
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin \left( {2x + 1} \right)\) là
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right)=x+\frac{4}{x}\) trên đoạn \(\left[ 1;\text{ }3 \right]\) bằng.
Một hình cầu có bán kính r=3cm khi đó diện tích mặt cầu là:
Cho số phức \({{z}_{1}}=1+i\) và \({{z}_{2}}=2-3i\). Tìm số phức liên hợp của số phức \(w={{z}_{1}}+{{z}_{2}}\)?
Cho hàm số \(f(x)\) có bàng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(y={f}'\left( x \right)\) là đường cong hình bên.
Giá trị nhỏ nhất của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-2\text{x} \right)\) trên \(\left[ -\frac{3}{2}\,;\,\frac{7}{2} \right]\) là
Cho chóp S.ABCD có đáy là hình vuông, \(SA\bot \left( ABCD \right)\). Góc giữa đường SC và mặt phẳng \(\left( SAD \right)\) là góc?