Lời giải của giáo viên
Ta có \(\left( {{{\log }_3}x - y} \right)\sqrt {{3^x} - 9} \le 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} x > 0\\ {3^x} \ge 9\,\,\,\,\,\,\, \end{array}\\ {{{\log }_3}x \le y} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {x \ge 2}\\ {x \le {3^y}} \end{array}} \right.\)
Nếu \({{3}^{y}}<2\) thì bất phương trình vô nghiệm ( không thỏa mãn).
Nếu \({{3}^{y}}=2\Leftrightarrow y={{\log }_{3}}2\approx 0,631\) thì bất phương trình có tập nghiệm \(T=\left\{ 2 \right\}\)
( không thỏa mãn vì \(y\) nguyên dương).
Nếu \({{3}^{y}}>2\Leftrightarrow y>{{\log }_{3}}2\approx 0,631\), khi đó bất phương trình có tập nghiệm \(T=\left[ 2;\,{{3}^{y}} \right]\)
Để mỗi giá trị \(y\), bất phương trình có không quá 2021 nghiệm nguyên \(x\) thì \({{3}^{y}}\le 2187\Leftrightarrow y\le {{\log }_{3}}2187=7\).
Kết hợp điều kiện \(y\) nguyên dương, \)0,631<y\le 7\) suy ra có 7 số \(y\) thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y={{x}^{3}}-3x-4\). Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ 0;2 \right]\). Khẳng định nào sau đây đúng?
Bất phương trình mũ \({{5}^{{{x}^{2}}-3x}}\le \frac{1}{25}\) có tập nghiệm là
Trong không gian \(Oxyz,\) vectơnào dưới đây không phải là vectơ chỉ phương của đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z}{-2}\)?
Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng 2 và chiều cao bằng một nửa cạnh đáy là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( -2\,;\,3\,;\,4 \right)\) . Viết phương trình đường thẳng \(\left( d \right)\) qua điểm \(M\) và vuông góc với mặt phẳng \(\left( Oxy \right)\).
Có 30 chiếc thẻ được đánh số thứ tự từ 1 đến 30. Chọn ngẫu nhiên một chiếc thẻ. Tính xác suất để chiếc thẻ được chọn mang số chia hết cho 3.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1\,;\,1\,;\,0 \right)\) và \(B\left( 1\,;\,-1\,;\,-4 \right)\) . Viết phương trình mặt cầu \(\left( S \right)\) nhận \(AB\) làm đường kính
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}?\)
Cho hàm số \(f\left( x \right),\) đồ thị của hàm số \(y={{f}^{/}}\left( x \right)\) là đường cong như hình vẽ. Giá trị nhỏ nhất của hàm số \(g\left( x \right)=f\left( 2x-1 \right)+6x\) trên đoạn \(\left[ \frac{1}{2};2 \right]\) bằng
Đường cong ở hình dưới đây là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?
Biết \(\int\limits_{1}^{2}{f\left( x \right)\text{d}x}=3\), \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=4\). Tính \(\int\limits_{2}^{5}{\left( 2f\left( x \right)+x \right)\text{d}x}\)
Đồ thị hàm số \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
Tổng các nghiệm của phương trình sau \({{7}^{x-1}}=6{{\log }_{7}}\left( 6x-5 \right)+1\) bằng
Tổng các nghiệm của phương trình \({{3}^{{{x}^{4}}-3{{x}^{2}}}}=81\) bằng