Lời giải của giáo viên
Gọi số cần tìm là \(\overline{abcd}\) với \(a,b,c,d\) là các chữ số khác nhau và khác 0.
Lấy 2 chữ số chẵn khác 0 trong các chữ số 2, 4, 6, 8 thì có \(C_{4}^{2}\) cách.
Lấy 2 chữ số lẻ trong các chữ số 1, 3, 5, 7, 9 thì có \(C_{5}^{2}\) cách.
Mỗi cách hoán vị 4 chữ số đã chọn ở trên ta được một số thỏa mãn điều kiện đề bài.
Suy ra có \(4!C_{4}^{2}C_{5}^{2}\) số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn và hai chữ số lẻ.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau?
Đồ thị hàm số \(y=\frac{\sqrt{x-7}}{{{x}^{2}}+3x-4}\) có bao nhiêu đường tiệm cận đứng?
Đồ thị hàm số \(y=\frac{2x-1}{x+1}\) có bao nhiêu đường tiệm cận?
Hàm số \(y=\sqrt[3]{{{x}^{2}}}\) có tất cả bao nhiêu điểm cực trị?
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị là đường cong như hình bên. Hỏi phương trình \(f\left( xf\left( x \right) \right)-2=0\) có bao nhiêu nghiệm phân biệt?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Thể tích khối chóp đã cho bằng:
Cho hàm số \(y=\frac{ax+b}{cx+d}\) với \(a>0\) có đồ thị như hình bên. Mệnh đề nào sau đây đúng?
Tính tổng các giá trị nguyên của hàm số m trên \(\left[ -20;20 \right]\) để hàm số \(y=\frac{\sin x+m}{\sin x-1}\) nghịch biến trên khoảng \(\left( \frac{\pi }{2};\pi \right).\)
Cho hình lập phương ABCD.A'B'C'D', gọi I là trung điểm BB'. Mặt phẳng \(\left( DIC' \right)\) chia khối lập phương thành 2 phần. Tính tỉ số thể tích phần bé chia phần lớn.
Nếu các số \(5+m;7+2m;17+m\) theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng \(\left( ABC \right),\) góc giữa đường thẳng SB và mặt phẳng \(\left( ABC \right)\) bằng \({{60}^{0}}.\) Thể tích khối chóp đã cho bằng
Tìm hệ số của \({{x}^{12}}\) trong khai triển \({{\left( 2x-{{x}^{2}} \right)}^{10}}.\)
Tìm tất cả các giá trị của a thỏa mãn \(\sqrt[15]{{{a}^{7}}}>\sqrt[5]{{{a}^{2}}}\)
Cho a là số thực lớn hơn 1. Khẳng định nào sau đây đúng?