Có chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng
A. \(\frac{1}{6}\)
B. \(\frac{3}{{20}}\)
C. \(\frac{2}{{15}}\)
D. \(\frac{1}{5}\)
Lời giải của giáo viên
Xếp tất cả 6 học sinh vào 6 ghế theo một hàng ngang, ta có số phần tử không gian mẫu \(n\left( \Omega \right) = 6!\) (cách).
Gọi D là biến cố học sinh lớp C chỉ ngồi cạnh học sinh lớp B
Trường hợp 1: Xếp học sinh lớp C ở đầu hàng hoặc cuối hàng
Số cách chọn học sinh lớp C ngồi vào 2 vị trí đầu hoặc cuối là: 2 (cách).
Số cách chọn 1 học sinh lớp B trong 2 học sinh lớp B ngổi cạnh C là: 2 (cách).
Số cách xếp4 học sinh còn lại (1 học sinh lớp B và 3 học sinh lớp A) là: 4! (cách).
Số cách xếp ở trường hợp 1 là: 2.2.4! (cách).
Trường hợp 2: học sinh lớp C ngồi giữa hai học sinh lớp B (buộc lại xem như một đơn vị cần xếp có dạng BCB)
Số cách xếp học sinh lớp B là: 2 (cách).
Số cách xếp ở trường hợp 2 là: 2.4! (cách). (gồm 3 bạn lớp A và phần được buộc lại)
Khi đó số phần tử biến cố D là: \(n\left( D \right) = 2.2.4! + 2.4! = 6.4!\) (cách).
Xác suất biến cố D là: \(P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{6.4!}}{{6!}} = \frac{1}{5}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm f(x) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2{x^2}f\left( {{x^2}} \right) + 2xf\left( {2x} \right) = 2{x^4} - 4x - 3,\forall x \in \left( {0; + \infty } \right)\). Giá trị của \(\int\limits_{\frac{1}{4}}^2 {f\left( x \right){\rm{d}}x} \) bằng
Tìm giá trị nhỏ nhất m của hàm số \(y = {x^3} + 2{x^2} - 7x\) trên đoạn [0;4].
Diện tích toàn phần của hình trụ có đường sinh l và bán kính đáy r bằng
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^{{x^2} - x}} > {\left( {\frac{1}{2}} \right)^{4 - x}}\)
Cho hàm số y = f(x) xác định , liên tục trên R và có bảng biến thiên sau:
Số nghiệm của phương trình f(x) - 2 = 0
Cho khối nón có chiều cao h = 15 và bán kính đáy r = 2. Thể tích khối nón đã cho bằng
Cho hình chóp có đáy S.ABC là tam giác vuông tại B, \(AB = 4a,\,\,\angle ACB = {30^0}\) mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy ( minh họa như hình vẽ bên ). Khoảng cách giữa hai đường thẳng AC và SB bằng
Cho hình chóp tam giác đều có cạnh đáy bằng \(\sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là
Cho hàm số y = f(x) hàm số liên tục trên R, có đồ thị như hình vẽ bên. Mệnh đề nào sau đúng?
Gọi A là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A, tính xác suất để số tự nhiên được chọn chia hết cho 45.
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{2x - m}}{{x - 1}}\) đồng biến trên khoảng xác định của nó.
Cho x, y là hai số thực thỏa mãn điều kiện \({x^2} + {y^2} + xy + 4 = 4y + 3x\). Gọi M là giá trị lớn nhất của biểu thức \(P = 3\left( {{x^3} - {y^3}} \right) + 20{x^2} + 2xy + 5{y^2} + 39x\). Mệnh đề nào dưới đây đúng?
Cho khối tứ diện ABCD có thể tích 2020. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 2}}{{{x^2} - 3x + 2}}\) là
Trong tất cả các cặp số thực (x;y) thỏa mãn \(lo{g_{{x^2} + {y^2} + 3}}\left( {2x + 2y + 5} \right) \ge 1,\) có bao nhiêu giá trị thực của m để tồn tại duy nhất cặp số thực (x;y) sao cho \({x^2} + {y^2} + 4x + 6y + 13 - m = 0\).