Dân số thế giới được dự đoán theo công thức \(S=A.{{\text{e}}^{Nr}}\) (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r à tỉ lệ tăng dân số hàng năm). Theo số liệu thực tế, dân số thế giới năm 1950 là 2560 triệu người; dân số thế giới năm 1980 là 3040 triệu người. Hãy dự đoán dân số thế giới năm 2020?
A. 3823 triệu người
B. 5360 triệu người
C. 3954 triệu người
D. 4017 triệu người
Lời giải của giáo viên
Ta có: \(\left\{ \begin{array}{l} S\left( {1950} \right) = A.{e^{1950.r}} = {2560.10^6}\\ S\left( {1980} \right) = A.{e^{1980.r}} = {3040.10^6} \end{array} \right.\)
Suy ra: \({e^{30r}} = \frac{{304}}{{256}} \Rightarrow {e^r} = \sqrt[{30}]{{\frac{{19}}{{16}}}}\) và \(A = \frac{{{{2560.10}^6}}}{{{e^{1950r}}}}\)
Vậy: \(S\left( {2020} \right) = A.{e^{2020.r}} = \frac{{{{2560.10}^6}.{{\left( {{e^r}} \right)}^{2020}}}}{{{{\left( {{e^r}} \right)}^{1950}}}} = {2560.10^6}.{\left( {{e^r}} \right)^{70}} \simeq {3823.10^6}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[ 0;\frac{5\pi }{2} \right]\) của phương trình \(f\left( \left| \sin x \right| \right)=2\) là
Trong không gian Oxyz, cho điểm K(1;-2;1). Mặt phẳng (P) đi qua K và vuông góc với trục Oy có phương trình là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Giả sử S = (a;b) là tập nghiệm của bất phương trình \({4^x} - {3.2^{x + 1}} + 8 < 0\). Giá trị biểu thức P = a + 2b.
Xét \(\int\limits_{0}^{1}{(x-1).{{e}^{{{x}^{2}}-2x+3}}dx}\), nếu đặt \(u={{x}^{2}}-2x+3\) thì \(\int\limits_{0}^{1}{(x-1).{{e}^{{{x}^{2}}-2x+3}}dx}\) bằng:
Cho hai số thực a>1,b>1. Biết phương trình \({{a}^{x}}{{b}^{{{x}^{2}}-1}}=1\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\). Tìm giá trị nhỏ nhất của biểu thức \(S={{\left( \frac{{{x}_{1}}{{x}_{2}}}{{{x}_{1}}+{{x}_{2}}} \right)}^{2}}-4\left( {{x}_{1}}+{{x}_{2}} \right)\).
Cho hai số phức \({z_1} = 2 - 4i\) và \({z_2} = 1 - 3i.\) Phần ảo của số phức \({z_1} + i\overline {{z_2}} \) bằng
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số \(y=-{{x}^{2}}-x+1,\,\,y=2, x=-1, x=1\) được tính bởi công thức nào dưới đây?
Cho tam giác ABC vuông tại A, trong đó AB=a, BC=2a. Quay tam giác ABC quanh trục AB ta được một hình nón có thể tích là
Tìm tập xác định D của hàm số \(y = {\log _3}\left( {{x^2} - 4x + 3} \right)\)
Thể tích của khối lăng trụ có diện tích đáy bằng 2 và độ dài chiều cao bằng 3.
Kí hiệu \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + z\sqrt 2 + 5 = 0\). Tính \(M = \frac{1}{{{z_1}}} + \frac{1}{{{z_2}}}\).
Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
Khi cắt khối trụ \(\left( T \right)\) bởi một mặt phẳng song song với trục và cách trục của trụ \(\left( T \right)\) một khoảng bằng \(a\sqrt{3}\) ta được thiết diện là hình vuông có diện tích bằng \(4{{a}^{2}}\). Tính thể tích V của khối trụ \(\left( T \right)\).
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( -4;\,3;\,1 \right)\) trên mặt phẳng \(\left( Oyz \right)\) có tọa độ là