Đầu mỗi tháng anh A gửi vào ngân hàng 3 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì anh A có được số tiền cả lãi và gốc nhiều hơn 100 triệu biết lãi suất không đổi trong quá trình gửi.
A. 30 tháng.
B. 40 tháng.
C. 35 tháng.
D. 31 tháng.
Lời giải của giáo viên
Ta có: \(T=\frac{M}{r}\left[ {{\left( 1+r \right)}^{n}}-1 \right]\left( 1+r \right)\)
Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:
\(\frac{3}{0,6%}\left[ {{\left( 1+0,6% \right)}^{n}}-1 \right]\left( 1+0,6% \right)>100\Leftrightarrow n>30,3\)
Vậy sau ít nhất 31 tháng thì anh A có được số tiền cả lãi và gốc nhiều hơn 100 triệu.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ -1;1 \right]\) và \(\int\limits_{-1}^{1}{f\left( x \right)dx}=4\). Kết quả \(I=\int\limits_{-1}^{1}{\frac{f\left( x \right)}{1+{{e}^{x}}}dx}\) bằng:
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.
Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:
Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh \({{S}_{xq}}\) của hình nón là:
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( 10;1 \right),B\left( 3;-2;0 \right),C\left( 1;2;-2 \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến \(\left( P \right)\) lớn nhất biết rằng \(\left( P \right)\) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là:
Tính \(\lim \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
Chọn ngẫu nhiên một số tự nhiên gồm 7 chữ số khác nhau có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \). Tính xác suất để số được chọn luôn có mặt chữ số 2 và thỏa mãn \({a_1} < {a_2} < {a_3} < {a_4} > {a_5} > {a_6} > {a_7}\).
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {5^{2x}}\)?