Điểm \(M\left( {x;y;z} \right)\) nếu và chỉ nếu:
A. \(\overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \)
B. \(\overrightarrow {OM} = z.\overrightarrow i + y.\overrightarrow j + x.\overrightarrow k \)
C. \(\overrightarrow {OM} = x.\overrightarrow j + y.k + z.\overrightarrow i \)
D. \(\overrightarrow {OM} = x.\overrightarrow k + y.\overrightarrow j + z.\overrightarrow i \)
Lời giải của giáo viên
Điểm \(M\left( {x;y;z} \right) \Leftrightarrow \overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:
Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:
Cho x và y là hai số phức. Trong các phương án sau, hãy lựa chọn phương án sai .
Tìm hàm số F(x) biết rằng \(F'(x) = \dfrac{1}{{{{\sin }^2}x}}\) và đồ thị của hàm số F(x) đi qua điểm \(M\left( {\dfrac{\pi }{6};0} \right)\).
Điều kiện xác định của phương trình \({\log _x}(2{x^2} - 7x + 5) = 2\) là:
Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx} \).
Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và \(\widehat {A\,\,} = {60^0}\) . Chân đường cao hạ từ B' xuống (ABCD) trùng với giao điểm 2 đường chéo, biết BB' = a. Thể tích khối lăng trụ là:
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 4m cắt đồ thị hàm số \(y = {x^4} - 8{x^2} + 3\) tại bốn điểm phân biệt ?
Đồ thị hàm số \(y = {{2x - 1} \over {x - 3}}\) có bao nhiêu đường tiệm cận ?
Cho hai số phức \({z_1} = 1 + i\,,\,\,{z_2} = 1 - i\). Kết luận nào sau đây sai ?