Đồ thị hàm bậc bốn trùng phương nào dưới đây có dạng đồ thị như hình vẽ bên
A. \(f\left( x \right)={{x}^{4}}-2{{x}^{2}}.\)
B. \(f\left( x \right)=-{{x}^{4}}+2{{x}^{2}}-1.\)
C. \(f\left( x \right)=-{{x}^{4}}+2{{x}^{2}}.\)
D. \(f\left( x \right)={{x}^{4}}+2{{x}^{2}}.\)
Lời giải của giáo viên
Bề lõm quay xuống dưới loại A, D.
Đồ thị hàm số đi qua điểm \(O\left( 0;0 \right)\) nên đáp án đúng là C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có dấu của \(f'\left( x \right)\) như sau
Hàm số \(y=f\left( 2-x \right)\) có bao nhiêu điểm cực trị?
Cho hình lăng trụ \(ABC.A'B'C'\) có chiều cao bằng 8 và đáy là tam giác đều cạnh bằng 6. Gọi \(M,N,P\) lần lượt là tâm của các mặt bên \(ABB'A',ACC'A'\) và \(BCC'B'.\) Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,B,C,M,N,P\) bằng:
Cho tam giác \(ABC\) có \(BC=a,CA=b,AB=c.\) Nếu \(a,b,c\) theo thứ tự lập thành một cấp số nhân thì
Cho lăng trụ đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a.\) Gọi \(\alpha \) là góc giữa mặt phẳng \(\left( A'BC \right)\) và mặt phẳng \(\left( ABC \right).\) Tính \(\tan \alpha .\)
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)=\cos x\sqrt{\sin x+1}.\)
Tổng các giá trị nguyên âm của \(m\) để hàm số \(y={{x}^{3}}+mx-\frac{1}{5{{x}^{5}}}\) đồng biến trên khoảng \(\left( 0;+\infty \right)\)?
Trong không gian với hệ trục tọa độ \(Oxyz\), để hai vecto \(\overrightarrow{a}=(m;2;3)\) và \(\overrightarrow{b}=(1;n;2)\) cùng phương thì \(2m+3n\) bằng
Một cấp số cộng có \({{u}_{2}}=5\) và \({{u}_{3}}=9.\) Khẳng định nào sau đây đúng?
Cho \(x,y\) là các số thực thỏa mãn \(x\ne 0\) và \({{\left( {{3}^{{{x}^{2}}}} \right)}^{3y}}={{27}^{x}}.\) Khẳng định nào sau đây là khẳng định đúng?
Cắt một khối cầu bởi một mặt phẳng đi qua tâm thì được một hình tròn có diện tích bằng \(16\pi .\) Tính diện tích của mặt cầu giới hạn nên khối cầu đó?
Cho tập Y gồm 5 điểm phân biệt trên mặt phẳng. Số véc-tơ khác \(\overrightarrow{0}\) có điểm đầu, điểm cuối thuộc tập Y là
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SD=\frac{a\sqrt{17}}{2},\) hình chiếu vuông góc \(H\) của \(S\) trên \(\left( ABCD \right)\) là trung điểm của đoạn \(AB. \) Gọi \(K\) là trung điểm của đoạn \(AD. \) Khoảng cách giữa hai đường \(HK\) và \(SD\) theo \(a\) là:
Hàm số \(y={{\left( 4-{{x}^{2}} \right)}^{\frac{3}{5}}}\) có tập xác định