Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình bên. Phương trình \(f\left( x \right) = \pi \) có bao nhiêu nghiệm thực phân biệt?
Hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 2\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Tìm mệnh đề đúng.
Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số có 3 chữ số khác nhau?
Hàm số \(y = - \frac{1}{4}{x^4} - 2{x^2} + 2\) có bao nhiêu điểm cực trị?
Hàm số \(y = \frac{x}{{{x^2} + 1}}\) có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Tính giá trị biểu thức \(P = {M^2} + {m^2}\).
Số điểm biểu diễn tập nghiệm của phương trình \({\sin ^3}x - 3{\sin ^2}x + 2\sin x = 0\) trên đường tròn lượng giác là:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}\) có ba đường tiệm cận.
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có đồ thị như hình vẽ dưới đây. Nhận xét nào đúng về hàm số \(g\left( x \right) = {f^2}\left( x \right)\)?
Tìm m để hàm số \(y = \frac{1}{{\sqrt {x - m} }} + \sqrt { - x + 2m + 6} \) xác định trên (-1;0):
Tìm tọa độ tâm I và bán kính R của đường tròn (C): \({x^2} + {y^2} - 2x + 4y + 1 = 0\).
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình \(x+y-1=0\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 1\). Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ \(\overrightarrow v = \left( {4;0} \right)\) cắt đường tròn (C) tại hai điểm \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\). Giá trị \({x_1} + {x_2}\) bằng:
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ bên. Mệnh đề nào dưới đây đúng?
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{mx + 10}}{{2x + m}}\) nghịch biến trên khoảng \(\left( {0;2} \right)\)?
Cho một đa giác lồi (H) có 10 cạnh. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó là ba đỉnh của (H), nhưng ba cạnh không phải ba cạnh của (H)?