Câu hỏi Đáp án 2 năm trước 39

Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:

A. \(1<a<2.\)

B. \(a<-2.\)

C. \(a\ge 3.\)

D. \(0<a\le 1.\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có \(F\left( x \right)=\int{f\left( x \right)dx=\int{{{x}^{2}}{{e}^{ax}}dx.}}\)

Đặt \(\left\{ \begin{array}{l} u = {x^2}\\ dv = {e^{ax}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 2xdx\\ v = \frac{1}{a}{e^{ax}} \end{array} \right..\)

\(F\left( x \right)=\frac{1}{a}{{x}^{2}}{{e}^{ax}}-\frac{2}{a}\int{x}{{e}^{ax}}dx=\frac{1}{a}{{x}^{2}}{{e}^{ax}}-\frac{2}{a}{{F}_{1}}\left( x \right)\) với \({{F}_{1}}\left( x \right)=\int{x}{{e}^{ax}}dx\).

Đặt \(\left\{ \begin{array}{l} {u_1} = x\\ d{v_1} = {e^{ax}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} d{u_1} = dx\\ {v_1} = \frac{1}{a}{e^{ax}} \end{array} \right..\)

Ta có \({{F}_{1}}\left( x \right)=\frac{1}{a}x{{e}^{ax}}-\frac{1}{a}\int{{{e}^{ax}}dx}=\frac{1}{a}x{{e}^{ax}}-\frac{1}{{{a}^{2}}}{{e}^{ax}}+{{C}_{1}}.\)

Vậy \(F\left( x \right)=\frac{1}{a}{{x}^{2}}{{e}^{ax}}-\frac{2}{a}\left( \frac{1}{a}x{{e}^{ax}}-\frac{1}{{{a}^{2}}}{{e}^{ax}}+{{C}_{1}} \right)=\frac{1}{a}{{x}^{2}}{{e}^{ax}}-\frac{2}{{{a}^{2}}}x{{e}^{ax}}+\frac{2}{{{a}^{3}}}{{e}^{ax}}+C.\)

Khi đó \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1\Leftrightarrow \frac{1}{{{a}^{3}}}e-\frac{2}{{{a}^{3}}}e+\frac{2}{{{a}^{3}}}e+C=\frac{2}{{{a}^{3}}}+C+1\)

\(\Leftrightarrow \frac{1}{{{a}^{3}}}e=\frac{2}{{{a}^{3}}}+1\Leftrightarrow e=2+{{a}^{3}}\Leftrightarrow {{a}^{3}}=e-2\Leftrightarrow a=\sqrt[3]{e-2}\approx 0,896\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?

Xem lời giải » 2 năm trước 144
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng

Xem lời giải » 2 năm trước 138
Câu 3: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?

Xem lời giải » 2 năm trước 46
Câu 5: Trắc nghiệm

Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Phương trình \({{4}^{2x-4}}=16\) có nghiệm là

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Cho hàm số f(x) liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y=f(x)\), \(y=0,\text{ }x=0\) và \(x=4\) (như hình vẽ). Mệnh đề nào dưới đây là đúng?

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=a,\) góc giữa đường thẳng \({A}'C\) và mặt phẳng \(\left( ABC \right)\) bằng 45°. Thể tích của khối lăng trụ \(ABC.{A}'{B}'{C}'\) bằng

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC=\frac{a\sqrt{2}}{2}\). Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \((ABC\text{D})\) một góc \(60{}^\circ \). Khoảng cách giữa hai đường thẳng AD và SC bằng

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »