Lời giải của giáo viên
Hàm số \(f\left( x \right) = \frac{4}{x} + x + 1\) liên tục trên đoạn [1;3].
+) \(f'\left( x \right) = - \frac{4}{{{x^2}}} + 1\).
+) \(f'\left( x \right) = 0 \Leftrightarrow 4{x^3} - 20x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 2\,\,\,\,\, \in \left[ {1\,;\,3} \right]\\ x = - 2\,\, \notin \left[ {1\,;\,3} \right] \end{array} \right.\).
+) \(f\left( 1 \right) = 6,\,f\left( 2 \right) = 5,\,f\left( 3 \right) = \frac{{16}}{3}\).
Từ đó suy ra: \(M = f\left( 1 \right) = 6,\,\,m = f\left( 2 \right) = 5,\,M - m = 1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với a là số thực dương tùy ý, \({\log _8}\left( {{a^3}} \right)\) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\). Một vectơ chỉ phương của d là
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = - 1 - 2i là điểm nào dưới đây ?
Cho cấp số nhân (un) với \({u_1} = 2\) và \({u_4} = 16\). Công bội của cấp số nhân đã cho bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} - 4x + 8y - 2z + 12 = 0.\) Tâm của (S) có tọa độ là
Tìm tập xác định D của hàm số \(y = {\left( {2x - 1} \right)^{\frac{1}{3}}}\)
Trong không gian Oxyz, phương trình mặt phẳng \(\left( P \right)\) qua hai điểm \(A\left( 2;1;-3 \right)\), \(B\left( 3;2;-1 \right)\) và vuông góc với mặt phẳng \(\left( Q \right):x+2y+3z-4=0\) là
Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) cạnh a. Tính diện tích toàn phần của vật thể tròn xoay thu được khi quay tam giác \(A{A}'{C}'\) quanh trục \(A{A}'\).
Cho hình trụ có hai đáy là hình tròn \(\left( O \right)\) và \(\left( {{O}'} \right)\). Trên hai đường tròn \(\left( O \right)\) và \(\left( {{O}'} \right)\) lần lượt lấy hai điểm A, B sao cho góc giữa đường thẳng AB và mặt phẳng chứa đường tròn đáy bằng \({{45}^{\mathrm{o}}}\), khoảng cách giữa đường thẳng AB và trục OO' bằng \(\frac{a\sqrt{2}}{2}\). Biết bán kính đáy bằng a, tính thể tích của khối trụ theo a.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.
Đồ thị trên là của hàm số nào ?
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(3f\left( x \right) - 16 = 0\) là
Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):2x + 3y + 2 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( \alpha \right)?\)
Diện tích xung quanh của hình chóp tứ giác đều có chiều cao h và cạnh đáy bằng 2a là
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = ln4, biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ \(x{\rm{ }}\,\left( {0 \le x \le \ln 4} \right)\) ta được thiết diện là hình vuông có cạnh \(\sqrt {x{e^x}} \)