Lời giải của giáo viên
Điều kiện: \(z\ne 4\)
Gọi \(z=x+iy\) với \(x,y\in \mathbb{R}, \left( x,y \right)\ne \left( 4;\,0 \right)\), ta có
\(\frac{z}{z-4}=\frac{x+iy}{x-4+iy}=\frac{\left( x+iy \right)\left( x-4-iy \right)}{{{\left( x-4 \right)}^{2}}+{{y}^{2}}}=\frac{x\left( x-4 \right)+{{y}^{2}}-4iy}{{{\left( x-4 \right)}^{2}}+{{y}^{2}}}\)
là số thuần ảo khi \(x\left( x-4 \right)+{{y}^{2}}=0\Leftrightarrow {{\left( x-2 \right)}^{2}}+{{y}^{2}}=4\)
Mà \(\left| z-m \right|=6\Leftrightarrow {{\left( x-m \right)}^{2}}+{{y}^{2}}=36\)
Ta được hệ phương trình
\(\left\{ \begin{array}{l} {\left( {x - m} \right)^2} + {y^2} = 36\\ {\left( {x - 2} \right)^2} + {y^2} = 4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left( {4 - 2m} \right)x = 36 - {m^2}\\ {y^2} = 4 - {\left( {x - 2} \right)^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \frac{{36 - {m^2}}}{{4 - 2m}}\\ {y^2} = 4 - {\left( {\frac{{36 - {m^2}}}{{4 - 2m}} - 2} \right)^2} \end{array} \right.\)
Ycbt \( \Leftrightarrow 4 - {\left( {\frac{{36 - {m^2}}}{{4 - 2m}} - 2} \right)^2} = 0\) \( \Leftrightarrow \left[ \begin{array}{l} \frac{{36 - {m^2}}}{{4 - 2m}} - 2 = 2\\ \frac{{36 - {m^2}}}{{4 - 2m}} - 2 = - 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \frac{{36 - {m^2}}}{{4 - 2m}} = 4\\ \frac{{36 - {m^2}}}{{4 - 2m}} = 0 \end{array} \right.\)
Ta loại trường hợp \(\frac{36-{{m}^{2}}}{4-2m}=4\) vì khi đó x=4 và y=0.
Suy ra \(m=\pm 6\)
Vậy tổng các giá trị của mlà 6-6=0.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
Cho \({{\log }_{a}}b=2\). Tính \(P={{\log }_{a}}\left( a{{b}^{2}} \right)\).
Biết \(I=\int\limits_{2}^{4}{\frac{2x+1}{{{x}^{2}}+x}\text{d}x} =a\ln 2+b\ln 3+c\ln 5\), với a, b, c là các số nguyên. Khi đó P=2a+3b+4c thuộc khoảng nào sau đây?
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\)
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số \(y=\left| {{x}^{3}}-3x+m \right|\) trên đoạn \(\left[ 0;\ 3 \right]\) bằng 20.
Thể tích của khối hộp chữ nhật có ba kích thước \(3;4;5\) bằng
Một hình nón có bán kính đáy r = 4cm và độ dài đường sinh l = 3cm. Diện tích xung quanh của hình nón đó bằng
Đồ thị của hàm số \(y={{x}^{4}}-3{{x}^{2}}-5\) cắt trục tung tại điểm có tung độ bằng
Số nghiệm nguyên của bất phương trình \({\log _3}\frac{{4x + 6}}{x} \le 0\) là
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{\frac{\pi }{3}}{\tan x.f\left( {{\cos }^{2}}x \right)\text{d}x}=\int\limits_{1}^{8}{\frac{f\left( \sqrt[3]{x} \right)}{x}\text{d}x}=6\). Tính \(\int\limits_{\frac{1}{2}}^{\sqrt{2}}{\frac{f\left( {{x}^{2}} \right)}{x}\text{d}x}\)
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{2}}=1\) và \({{u}_{3}}=3\). Giá trị của \({{u}_{4}}\) bằng
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?
Có bao nhiêu số nguyên m để phương trình \({\log _3}\left( {{3^x} + 2m} \right) = {\log _5}\left( {{3^x} - {m^2}} \right)\) có nghiệm?