Hãy chọn phát biểu đúng. Trong tập số phức C
A. \(z + \overline z \) là số thuần ảo.
B. \(\overline {{z_1} + {z_2}} = \overline {{z_1}} + \overline {{z_2}} \).
C. \({z^2} - {\left( {\overline z } \right)^2} = 4ab\).
D. \(|{z_1} + {z_2}| = |{z_1}| + |{z_2}|\).
Lời giải của giáo viên
Trong tập số phức C, ta có: \(\overline {{z_1} + {z_2}} = \overline {{z_1}} + \overline {{z_2}} \).
CÂU HỎI CÙNG CHỦ ĐỀ
Một chiếc xe ô tô có thùng đựng hàng hình hộp chữ nhật với kích thước 3 chiều lần lượt là 2m; 1,5m; 0,7m. Tính thể tích thùng đựng hàng của xe ôtô đó.
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị (C). Hệ số góc tiếp tuyến với (C) tại điểm M(- 1 ; 2) bằng:
Phương trình \({\log _2}x + {\log _2}(x - 1) = 1\) có tập nghiệm là:
Cho hai điểm \(A,B\) cố định. Tập hợp các điểm \(M\) trong không gian sao cho diện tích tam giác \(MAB\) không đổi là
Chọn câu đúng. Trung điểm các cạnh của một tứ diện đều là
Diện tích xung quanh của một hình nón tròn xoay ngoại tiếp tứ diện đều cạnh \(a\) là
Với điểm \(O\) cố định thuộc mặt phẳng \(\left( P \right)\) cho trước, xét đường thẳng \(l\) thay đổi đi qua điểm \(O\) và tạo với mặt phẳng \(\left( P \right)\) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là
Cho hình (H) giới hạn bởi đường cong là \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc với (ABC). Tính khoảng cách từ trọng tâm G của tam giác SAB đến (SAC)?
Giá trị của \({\log _a}\left( {\dfrac{{a^2}\root 3 \of {{a^2}} \root 5 \of {{a^4}} }{{\root {15} \of {{a^7}} }}} \right)\) bằng :
Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Thể tích khối chóp \(M.BC{A_1}\) là:
Cho hàm số \(y = {x^3} - 3x\). Mệnh đề nào dưới đây đúng ?
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.
Giá trị của \({\log _{{a^5}}}a\,\,\,(a > 0,\,\,a \ne 1)\) bằng: