Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Nhân Chính
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
70 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Hàm số \(y = - {x^3} + 3{x^2} - 4\) có đồ thị như hình vẽ sau
Tìm các giá trị của m đề phương trình \({x^3} - 3{x^2} + m = 0\) có hai nghiệm
\(\begin{array}{l}{x^3} - 3{x^2} + m = 0\\ \Leftrightarrow - {x^3} + 3{x^2} = m\\ \Leftrightarrow - {x^3} + 3{x^2} - 4 = m - 4\end{array}\)
Số nghiệm của phương trình \({x^3} - 3{x^2} + m = 0\) là số giao điểm của đồ thị hàm số \(y = - {x^3} + 3{x^2} - 4\) và đường thẳng \(y= m - 4\).
\( \Rightarrow \) Để pt \({x^3} - 3{x^2} + m = 0\) có 2 nghiệm phân biệt thì đồ thị hàm số \(y = - {x^3} + 3{x^2} - 4\) cắt đường thẳng \(y= m – 4\) tại 2 đi ểm \(\left[ \begin{array}{l}m - 4 = 0\\m - 4 = - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 4\\m = 0\end{array} \right.\)
Điểm cực đại của hàm số \(y = - {x^3} + 3{x^2} + 2\)
\(y = - {x^3} + 3{x^2} + 2\)
TX Đ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = - 3{x^2} + 6x\\y' = 0\\ \Rightarrow - 3{x^2} + 6x = 0\\ \Leftrightarrow x( - 3x + 6) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)
Từ bảng biến thiên, điểm cực đại của hàm số: \(x=2\)
Tìm tập nghiệm S của phương trình \({z^3} + {z^2} - 2 = 0\) trên trường số phức.
\(\begin{array}{l}{z^3} - {z^2} - 2 = 0\\ \Leftrightarrow \left( {z - 1} \right)\left( {{z^2} + 2z + 2} \right)\\ \Leftrightarrow \left[ \begin{array}{l}z - 1 = 0\\{z^2} + 2z + 2 = 0\end{array} \right.\end{array}\)\(\)
Giải pt (2)
Ta có \(\Delta = {(b')^2} - a.c = 1 - 2 = - 1 = {i^2}\)
\(\Delta \) có hai căn bậc hai là i và – i
Nghiệm của pt (2) là \({x_1} = - 1 - {\rm{ }}i\) và
Tập nghiệm S trên trường số phức là: S={ 1, -1- i, -1+ i}
Tính mô đun của số phức \(z\dfrac{{1 + 2i}}{{1 - i}}\).
\(\begin{array}{l}z = \dfrac{{1 + 2i}}{{1 - i}} = \dfrac{{\left( {1 + 2i} \right).\left( {1 + i} \right)}}{{\left( {1 - i} \right)\left( {1 + i} \right)}}\\\,\,\,\, = \dfrac{{1 + 3i + 2.{i^2}}}{{1 - {i^2}}} = \dfrac{{ - 1 + 3.i}}{2}\\\,\,\,\, = \dfrac{{ - 1}}{2} + \dfrac{3}{2}i\\ \Rightarrow \left| z \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{3}{2}} \right)}^2}} = \dfrac{{\sqrt {10} }}{2}\end{array}\)
Số cạnh của một khối chóp tam giác là?
Tứ diện có 6 cạnh.
Chọn C
Khi tăng kích thước mỗi cạnh của khối hộp chữ nhật lên 5 lần thì thể tích khối hộp chữ nhật tăng bao nhiêu lần?
\(\begin{array}{l}V = B.h = abh\\V' = B'.h' = 5a.5b.5h = 125abh = 125V\end{array}\)
Chọn A
Cho số dương a, biểu thức \(\sqrt a .\root 3 \of a \root 6 \of {{a^5}} \) viết dưới dạng lũy thừa hữu tỷ là:
Ta có: \(\sqrt a .\sqrt[3]{a}\sqrt[6]{{{a^5}}} = {a^{\dfrac{1}{2}}}.\,{a^{\dfrac{1}{3}}}.\,{a^{\dfrac{5}{6}}}\)\(\, = {a^{\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{5}{6}}} = {a^{\dfrac{5}{3}}}\)
Chọn đáp án D.
Tìm tập xác định của hàm số sau \(f(x) = \sqrt {{{\log }_2}{\dfrac{3 - 2x - {x^2}}{x + 1}}} \).
Tập xác định của hàm số:
\(\left\{ \begin{array}{l}{\log _2}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge 0\\\dfrac{{3 - 2x - {x^2}}}{{x + 1}} > 0;\,x \ne - 1\end{array} \right. \\ \Leftrightarrow \dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge 1 \\ \Leftrightarrow \dfrac{{2 - 3x - {x^2}}}{{x + 1}} \ge 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}2 - 3x - {x^2} \ge 0\\x + 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}2 - 3x - {x^2} \le 0\\x + 1 < 0\end{array} \right.\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \in \left[ {\dfrac{{ - 3 - \sqrt {17} }}{2};\dfrac{{ - 3 + \sqrt {17} }}{2}} \right]\\x > - 1\end{array} \right.\\\left\{ \begin{array}{l}x \in \left( { - \infty ;\dfrac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left[ {\dfrac{{ - 3 + \sqrt {17} }}{2}; + \infty } \right)\\x < - 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x \in \left( { - 1;\dfrac{{ - 3 + \sqrt {17} }}{2}} \right]\\x \in \left( { - \infty ;\dfrac{{ - 3 - \sqrt {17} }}{2}} \right]\end{array} \right.\)
\( \Rightarrow \)\(\left( { - \infty ;\dfrac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left( { - 1;\dfrac{{ - 3 + \sqrt {17} }}{2}} \right]\)
Chọn đáp án A.
Cho hình (H) giới hạn bởi đường cong là \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
Hình phẳng được giới hạn bởi đồ thị hàm số \(x = g\left( y \right)\) liên tục trên \(\left[ {a;b} \right]\), trục \(Oy\) và hai đường thẳng \(y = a;y = b\) quay quanh trục \(Oy\) ta được khối tròn xoay có thể tích là: \({V_y} = \pi \int\limits_a^b {{g^2}\left( y \right)} \;dy\)
Áp dụng vào bài toán, ta có \({y^2} + x = 0 \Rightarrow x = - {y^2}\).
Đồ thị hàm số \(x = - {y^2}\) liên tục trên \(\left[ {0;1} \right]\), trục Oy và hai đường thẳng \(y = 0,\;y = 1\)
Khi đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục Oy được tính bởi:
\(V = \pi \int\limits_0^1 {\left( { - {y^2}} \right){\,^2}dy} = V = \pi \int\limits_0^1 {{y^4}\,dy} .\)
Chọn đáp án C.
Cho tích phân sau \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
Ta có:
\(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \)
\(\;\;\;= \int\limits_0^{2004\pi } {\sqrt {1 - \left( {1 - 2{{\sin }^2}x} \right)} \;dx} \)
\(\;\;\;= \int\limits_0^{2004\pi } {\sqrt 2 \left| {\sin x} \right|\;dx} \)
\(\;\;\;= \sqrt 2 \left| {\cos x} \right|\left| {_0^{2004\pi }} \right.\)
\( \to \) Đáp án C sai.
Chọn đáp án C.
Với điểm \(O\) cố định thuộc mặt phẳng \(\left( P \right)\) cho trước, xét đường thẳng \(l\) thay đổi đi qua điểm \(O\) và tạo với mặt phẳng \(\left( P \right)\) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là
Tập hợp các đường thẳng đó là mặt nón có góc ở đỉnh bằng \(60^0\).
Chọn D.
Diện tích xung quanh của một hình nón tròn xoay nội tiếp tứ diện đều cạnh \(a\) là
Bán kính của hình nón là: \(r = \dfrac{{a\sqrt 3 }}{2}.\dfrac{1}{3} = \dfrac{{a\sqrt 3 }}{6}\) ; đường sinh \(l = \dfrac{{a\sqrt 3 }}{2}\)
Diện tích xung quanh của hình nón là:
\({S_{xq}} = \pi rl = \pi \dfrac{{a\sqrt 3 }}{6}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{\pi {a^2}}}{4}\)
Chọn A
Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\), \(\overrightarrow u = k\overrightarrow a - \overrightarrow b ;\,\overrightarrow v = \overrightarrow a + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì \(k\) bằng
\(\begin{array}{l}\overrightarrow u .\overrightarrow v \\ = \left( {k\overrightarrow a - \overrightarrow b \,} \right)\left( {\overrightarrow a + 2\overrightarrow b } \right) \\= 4k - 50 + \left( {2k - 1} \right)\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \dfrac{{2\pi }}{3}\\ = - 6k - 45\end{array}\)
Cho \(\overrightarrow u = \left( {2; - 1;1} \right),\overrightarrow v = \left( {m;3; - 1} \right),\overrightarrow {\rm{w}} = \left( {1;2;1} \right)\). Với giá trị nào của m thì ba vectơ trên đồng phẳng
Ta có: \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( { - 2;m + 2;m + 6} \right),{\rm{ }}\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 3m + 8\)
\(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 0 \Leftrightarrow m = - \dfrac{8}{3}\)
Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành.
Xét \(y = {x^4} - 3{x^2} - 5\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 4{x^3} - 6x\\y' = 0\\ \Rightarrow 4{x^3} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{{\sqrt 6 }}{2}\\x = - \dfrac{{\sqrt 6 }}{2}\end{array} \right.\end{array}\)
Bảng biến thiên
Từ bảng biến thiên, số giao điểm của đồ thị \(y = {x^4} - 3{x^2} - 5\) với trục hoành là 2.
Cách khác:
Đặt \(t = {x^2} \ge 0\) ta được:
\({t^2} - 3t - 5 = 0\) có \(ac < 0\) nên pt có hai nghiệm t trái dấu (nghiệm dương nhận, nghiệm âm loại)
Do đó pt đã cho có \(2\) nghiệm phân biệt.
Giá trị của \({\log _a}\left( {\dfrac{{a^2}\root 3 \of {{a^2}} \root 5 \of {{a^4}} }{{\root {15} \of {{a^7}} }}} \right)\) bằng :
Ta có:
\({\log _a}\left( {\dfrac{{{a^2}\sqrt[3]{{{a^2}}}\sqrt[5]{{{a^4}}}}}{{\sqrt[{15}]{{{a^7}}}}}} \right)\)
\(= {\log _a}\left( {\dfrac{{{a^2}.{a^{\dfrac{2}{3}}}.{a^{\dfrac{4}{5}}}}}{{{a^{\dfrac{7}{{15}}}}}}} \right)\)
\(= {\log _a}\left( {\dfrac{{{a^{\dfrac{{52}}{{15}}}}}}{{{a^{\dfrac{7}{{15}}}}}}} \right)\)
\(= {\log _a}\left( {{a^3}} \right) = 3\)
Chọn đáp án A.
Cho \({4^x} + {4^{ - x}} = 23\). Khi đó biểu thức \(K = \dfrac{5 + {2^x} + {2^{ - x}}}{{1 - {2^x} - {2^{ - x}}}}\) có giá trị bằng :
Ta có: \({4^x} + {4^{ - x}} = 23 \)
\(\Leftrightarrow {\left( {{2^x}} \right)^2} + {\left( {{2^{ - x}}} \right)^2} = 23 \)
\(\Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} - {2.2^x}{.2^{ - x}} = 23\)
\( \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} = 25\)
\(\Leftrightarrow {2^x} + {2^{ - x}} = 5\)
Khi đó \(K = \dfrac{{5 + 5}}{{1 - \left( 5 \right)}} = \dfrac{{10}}{{ - 4}} = - \dfrac{5}{2}\)
Chọn đáp án A.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc với (ABC). Tính khoảng cách từ trọng tâm G của tam giác SAB đến (SAC)?
Gọi I là trung điểm của AB khi đó dựng \(IH \bot \left( {SAC} \right)\)
Khi đó \(IH = \dfrac{{OB}}{2} = \dfrac{{BD}}{4} = \dfrac{{a\sqrt 2 }}{4}\)
\(d\left( {G,\left( {SAC} \right)} \right) = \dfrac{2}{3}d\left( {I,\left( {SAC} \right)} \right)\)\(\, = \dfrac{2}{3}IH = \dfrac{{a\sqrt 2 }}{6}\)
Chọn B
Một chiếc xe ô tô có thùng đựng hàng hình hộp chữ nhật với kích thước 3 chiều lần lượt là 2m; 1,5m; 0,7m. Tính thể tích thùng đựng hàng của xe ôtô đó.
Thể tích của thùng hàng đó là:
\(V = abc = 2.1,5.0,7 = 2,1\left( {{m^3}} \right)\)
Chọn D.
Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Thể tích khối chóp \(M.BC{A_1}\) là:
\(\Delta ABC\)là tam giác đều cạnh \(a\)nên có diện tích \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Ta có \(AM = \dfrac{{A{A_1}}}{2} = \dfrac{a}{2}\)
Hai tứ diện \(MABC\)và \(M{A_1}BC\)có chung đỉnh\(C\), diện tích hai đáy \(MAB\)và \(M{A_1}B\)bằng nhau nên có thể tích bằng nhau, suy ra
\({V_{M.BC{A_1}}} = {V_{M.ABC}} = \dfrac{1}{3}AM.{S_{ABC}} \)\(\,= \dfrac{{{a^3}\sqrt 3 }}{{24}}\)
Chọn B.
Diện tích xung quanh của một hình nón tròn xoay ngoại tiếp tứ diện đều cạnh \(a\) là
Bán kính đáy của hình nón là: \(R = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)
Chiều cao của hình nón là: \(h = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{a\sqrt 6 }}{3}\)
Diện tích xung quanh của hình nón là:
\({S_{xq}} = \pi Rl = \pi \dfrac{{a\sqrt 3 }}{3}.a = \dfrac{{\pi {a^2}\sqrt 3 }}{3}\)
Chọn A.
Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
\(\overrightarrow {AB} = \left( {1;2;1} \right),\overrightarrow {AC} = \left( {x - 2;y - 5;3} \right)\)
\(A,B,C\) thẳng hàng \( \Leftrightarrow \overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương\( \Leftrightarrow \dfrac{{x - 2}}{1} = \dfrac{{y - 5}}{2} = \dfrac{3}{1} \Leftrightarrow x = 5;y = 11\)
Số phức \(z = \dfrac{{1 - i}}{{1 + i}} - 3 + 4i\) có số phức liên hợp là:
\(\begin{array}{l}z = \dfrac{{1 - i}}{{1 + i}} - 3 + 4i\\\,\,\,\,\, = \dfrac{{{{\left( {1 - i} \right)}^2}}}{{1 - {i^2}}} - 3 + 4i\\\,\,\,\,\, = - i - 3 + 4i = - 3 + 3i\end{array}\)
Số phức liên hợp của z là: \(\overline z = - 3 - 3i\)
Trên mặt phẳng tọa độ, để tập hợp điểm biểu diễn các số phức z nằm trong phần gạch chéo ( kể cả biên ) ở hình vẽ dưới đây thì điều kiện của z là:
Điều kiện của z là: \(|z| \le 1\) và phần ảo thuộc đoạn \(\left[ { - \dfrac{1}{2};\dfrac{1}{2}} \right]\).
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị (C). Hệ số góc tiếp tuyến với (C) tại điểm M(- 1 ; 2) bằng:
\(\begin{array}{l}
y' = 3{x^2} - 2\\
\Rightarrow k = y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} - 2 = 1
\end{array}\)
Điều kiện của tham số m đề hàm số \(y = \dfrac{{ - {x^3}}}{ 3} + {x^2} + mx\) nghịch biến trên R là
\(y = - \dfrac{{{x^3}}}{3} + {x^2} + mx\)
Txđ : \(D = \mathbb{R}\)
\(y' = - {x^2} + 2x + m\)
Hàm số \(y = - \dfrac{{{x^3}}}{3} + {x^2} + mx\) nghịch biến trên \(\mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow y' \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow - {x^2} + 2x + m \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow \Delta ' \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow 1 + m \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow m \le - 1\end{array}\)
Hãy tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).
Ta có \(\int {\left( {4\cos x + \dfrac{1}{{{x^2}}}} \right)} \;dx \)\(\,= 4\sin x - \dfrac{1}{x} + C.\)
Chọn đáp án C.
Mệnh đề nào sau đây là sai ?
Ta có: \(\int\limits_b^c {f\left( x \right)} \;dx = \int\limits_b^a {f\left( x \right)\,dx + \int\limits_a^c {f\left( {x\,} \right)dx} } \)
\( \to \) Đáp án C sai.
Chọn đáp án C.
Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
Ta có: \(\int {{{\sin }^3}x.\cos x\,dx} = \int {{{\sin }^3}x\;d\left( {\sin x} \right)}\)\(\, = \dfrac{1}{4}{\sin ^4}x + C.\)
Chọn đáp án B.
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.
Gọi G là trọng tâm tam giác ABC, I là trung điểm của AB
\(\begin{array}{l}\left. \begin{array}{l}GA = GB = GC\\SA = SB = SC\end{array} \right\} \Rightarrow SG \bot \left( {ABC} \right)\\CG = \dfrac{2}{3}CI = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\\SG = \sqrt {S{C^2} - C{G^2}} \\ = \sqrt {{{\left( {\dfrac{{a\sqrt 6 }}{3}} \right)}^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{a\sqrt 3 }}{3}\\V = \dfrac{1}{3}SG.{S_{ABC}} \\\;\;\;\;= \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{{12}}\end{array}\)
Chọn A
Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
\(\overrightarrow {BA} = \left( {1;0; - 1} \right),\overrightarrow {CA} = \left( { - 1; - 1; - 1} \right),\overrightarrow {CB} = \left( { - 2; - 1;0} \right)\)
\(\overrightarrow {BA} .\overrightarrow {CA} = 0 \Rightarrow \)tam giác vuông tại \(A\) , \(AB \ne AC\) .
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Gọi I là trung điểm của AB, H là chân đường vuông góc của O lên mp (SAB)
\(\begin{array}{l}SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{8^2} - {5^2}} = \sqrt {39} \\OI = \sqrt {O{A^2} - I{A^2}} = \sqrt {{5^2} - {4^2}} = 3\\\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{I^2}}} = \dfrac{1}{{39}} + \dfrac{1}{9} = \dfrac{{16}}{{117}}\\ \Rightarrow OH = \dfrac{{3\sqrt {13} }}{4}\end{array}\)
Chọn B
Đồ thị hàm số \(y = \dfrac{{2x - 3} }{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là
\(y = \dfrac{{2x - 3}}{{x - 1}}\)
TXĐ : D=\(\mathbb{R}\backslash \left\{ 1 \right\}\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2x - 3}}{{x - 1}} = 2\\ \Rightarrow TCN:y = 2\\\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \\\mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \end{array} \right\} \Rightarrow TCĐ:x = 1\end{array}\)
Cho hàm số \(y = {x^3} - 3x\). Mệnh đề nào dưới đây đúng ?
y=x3 – 3x
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0\\ \Rightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\end{array} \right.\end{array}\)
Từ bảng biến thiên, hàm số đồng biến trên \(( - \infty , - 1)\) và \((1, + \infty )\); nghịch biến trên \(( - 1,1)\)
Giá trị của \({\log _{{a^5}}}a\,\,\,(a > 0,\,\,a \ne 1)\) bằng:
Ta có: \({\log _{{a^5}}}a = \dfrac{1}{5}{\log _a}a = \dfrac{1}{5}.\)
Chọn đáp án A.
Giá trị nhỏ nhất của hàm số sau \(y = {e^{{x^2}}}\) là:
Ta có: \({x^2} \ge 0 \Rightarrow {e^{{x^2}}} \ge {e^0} = 1\)
Chọn đáp án A.
Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
Hình phẳng gới hạn bởi đồ thị hàm số \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\) lên tục trên đoạn \(\left[ {\pi ;2\pi } \right]\) và hai đường thẳng \(x = \pi ,\,x = 2\pi \). Diện tích hình phẳng đó được xác định bởi công thức:
\(S = \int\limits_\pi ^{2\pi } \left| {{{\sin }^2}x - \left({ - {{\cos }^2}x} \right)} \right|dx \\\;\;\;= \int\limits_\pi ^{2\pi } \left| {{{\sin }^2}x + {{\cos }^2}x} \right|dx \)\(\;\;\;= \int\limits_\pi ^{2\pi } {1.dx} = x\left| {_\pi ^{2\pi }} \right. = 2\pi - \pi = \pi \)
Chọn đáp án A.
Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
Áp dụng công thức \(\int {{a^x}\;dx} = \dfrac{{{a^x}}}{{\ln a}}\; + C\)
Ta có: \(\int {{{2009}^x}\,dx} = \dfrac{{{{2009}^x}}}{{\ln 2009}} + C\)
Chọn đáp án B.
Mô đun của số phức z thỏa mãn \(z + \left( {2 + i} \right)\overline z = 3 + 5i\) là:
Đặt z = a + bi \(a,b \in \mathbb{Z}\)
\(\begin{array}{l}z + \left( {2 + i} \right)\overline z = 3 + 5i\\ \Leftrightarrow \left( {a + bi} \right) + \left( {2 + i} \right)\left( {a - bi} \right) = 3 + 5i\\ \Leftrightarrow 3a + b + ai - bi = 3 + 5i\\ \Leftrightarrow 3a + b + \left( {a - b} \right)i = 3 + 5i\\ \Leftrightarrow \left\{ \begin{array}{l}3a + b = 3\\a - b = 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 3\end{array} \right.\left( {tm} \right)\\ \Rightarrow z = 2 - 3i\\ \Rightarrow \left| z \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}} = \sqrt {13} \end{array}\)
Hãy chọn phát biểu đúng. Trong tập số phức C
Trong tập số phức C, ta có: \(\overline {{z_1} + {z_2}} = \overline {{z_1}} + \overline {{z_2}} \).
Công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h
Công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h là \(V = Bh.\)
Chọn câu đúng. Trung điểm các cạnh của một tứ diện đều là
Trung điểm các cạnh của một tứ diện đều là các đỉnh của một hình bát diện đều.
Cho hai điểm \(A,B\) cố định. Tập hợp các điểm \(M\) trong không gian sao cho diện tích tam giác \(MAB\) không đổi là
Gọi d là khoảng cách từ điểm M đến đường thẳng AB.
Suy ra \({S_{MAB}} = \dfrac{1}{2}.d\left( {M,AB} \right).AB = \dfrac{1}{2}d.AB\)
Vì \({S_{MAB}};AB\) là hằng số nên d không đổi .
Vậy tập hợp các điểm M thỏa mãn yêu cầu bài toán là một mặt trụ tròn xoay.
Chọn B.
Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng
Gọi a là chiều cao của khối trụ suy ra khối trụ có bán kính bằng \(\dfrac{a}{2}\) .
Ta có: \({S_{xq}} = 2\pi .\dfrac{a}{2}.a = 4\pi \Leftrightarrow a = 2\)
Diện tích toàn phần của khối trụ là: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 4\pi + 2.\pi {.1^2} = 6\pi \)
Chọn A.
Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
\(\overrightarrow {AB} = \left( { - 1;0;1} \right),\overrightarrow {AC} = \left( {1;1;1} \right)\) . \({S_{\Delta ABC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {AB} .\overrightarrow {AC} } \right]} \right| = \dfrac{{\sqrt 6 }}{2}\)
Trong các hàm số cho sau đây, hàm số nào đồng biến trên R ?
\(y = {x^3} + 1\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 3{x^2}\\y' = 0 \Rightarrow 3{x^2} = 0 \Rightarrow x = 0\end{array}\)
Từ bbt, hàm số đồng biến trên \(\mathbb{R}\)
Số nghiệm của phương trình \({\log _5}(5x) - {\log _{25}}(5x) - 3 = 0\) là:
Điều kiện: \(5x > 0 \Rightarrow x > 0\)
Ta có: \({\log _5}(5x) - {\log _{25}}(5x) - 3 = 0 \)
\(\Leftrightarrow {\log _5}(5x) - {\log _{{5^2}}}(5x) - 3 = 0\)
\( \Leftrightarrow {\log _5}(5x) - \dfrac{1}{2}{\log _5}(5x) = 3\)
\( \Leftrightarrow \dfrac{1}{2}{\log _5}(5x) = 3 \)
\(\Leftrightarrow {\log _5}\left( {5x} \right) = 6\)
\( \Leftrightarrow 5x = {5^6} \Leftrightarrow x = {5^5}\).
Vậy phương trình đã cho có 1 nghiệm
Chọn đáp án C.
Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
Gọi 3 đỉnh theo thứ tự là \(A,B,C\)
\(\overrightarrow {AB} = \left( {1;2;3} \right),\overrightarrow {AC} = \left( {6;6;4} \right)\)
\({S_{hbh}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{14}^2} + {{\left( { - 6} \right)}^2}} = 2\sqrt {83} \)
Gọi \({z_1}\,,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} + 2z + 10 = 0\). Tính \(|{z_1}{|^2} + |{z_2}{|^2}\).
\({z^2} + 2z + 10 = 0\)
Có \(\Delta ' = {\left( {b'} \right)^2} - ac = 1 - 10 = - 9 = {\left( {3i} \right)^2}\)
\(\Delta \) có hai căn bậc hai là 3i và – 3i
Phương trình có hai nghiệm \({z_1} = {\rm{ }} - 1{\rm{ }} + {\rm{ }}3i\) và \({z_2} = {\rm{ }} - 1{\rm{ }}--{\rm{ }}3i\)
\(\begin{array}{l}\left| {{z_1}} \right| = \left| {{z_2}} \right| = \sqrt {10} \\ \Rightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} = 10\\ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 20\end{array}\)
Phương trình \({\log _2}x + {\log _2}(x - 1) = 1\) có tập nghiệm là:
Điều kiện: \(x > 1.\)
Ta có: \({\log _2}x + {\log _2}(x - 1) = 1\)
\(\Leftrightarrow \log {}_2\left[ {x\left( {x - 1} \right)} \right] = 1\)
\(\Leftrightarrow {x^2} - x = 2\)
\( \Leftrightarrow {x^2} - x - 2 = 0 \)
\(\Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right) = 0 \)
\(\Leftrightarrow \left[ \begin{array}{l}x = - 1(ktm)\\x = 2(tm)\end{array} \right.\)
Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ { 2} \right\}\)