Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Nhân Chính

Đề thi thử THPT QG năm 2022 môn Toán

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 70 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 151178

Hàm số \(y =  - {x^3} + 3{x^2} - 4\) có đồ thị như hình vẽ sau

Tìm các giá trị của m đề phương trình \({x^3} - 3{x^2} + m = 0\) có hai nghiệm

Xem đáp án

\(\begin{array}{l}{x^3} - 3{x^2} + m = 0\\ \Leftrightarrow  - {x^3} + 3{x^2} = m\\ \Leftrightarrow  - {x^3} + 3{x^2} - 4 = m - 4\end{array}\)

Số nghiệm của phương trình \({x^3} - 3{x^2} + m = 0\) là số giao điểm của đồ thị hàm số \(y =  - {x^3} + 3{x^2} - 4\) và đường thẳng  \(y= m - 4\).

\( \Rightarrow \) Để pt \({x^3} - 3{x^2} + m = 0\) có 2 nghiệm phân biệt thì đồ thị hàm số \(y =  - {x^3} + 3{x^2} - 4\) cắt đường thẳng  \(y= m – 4\) tại 2 đi ểm \(\left[ \begin{array}{l}m - 4 = 0\\m - 4 =  - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 4\\m = 0\end{array} \right.\)

Câu 2: Trắc nghiệm ID: 151179

Điểm cực đại của hàm số \(y =  - {x^3} + 3{x^2} + 2\)

Xem đáp án

\(y =  - {x^3} + 3{x^2} + 2\)

TX Đ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' =  - 3{x^2} + 6x\\y' = 0\\ \Rightarrow  - 3{x^2} + 6x = 0\\ \Leftrightarrow x( - 3x + 6) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Từ bảng biến thiên, điểm cực đại của hàm số: \(x=2\)

Câu 3: Trắc nghiệm ID: 151180

Tìm tập nghiệm S của phương trình \({z^3} + {z^2} - 2 = 0\) trên trường số phức.

Xem đáp án

 \(\begin{array}{l}{z^3} - {z^2} - 2 = 0\\ \Leftrightarrow \left( {z - 1} \right)\left( {{z^2} + 2z + 2} \right)\\ \Leftrightarrow \left[ \begin{array}{l}z - 1 = 0\\{z^2} + 2z + 2 = 0\end{array} \right.\end{array}\)\(\)

Giải pt (2)

Ta có  \(\Delta  = {(b')^2} - a.c = 1 - 2 =  - 1 = {i^2}\)

\(\Delta \) có hai căn bậc hai là i và – i

Nghiệm của pt (2) là \({x_1} =  - 1 - {\rm{ }}i\) và   

Tập nghiệm S trên trường số phức là: S={ 1, -1- i, -1+ i}

Câu 4: Trắc nghiệm ID: 151181

Tính mô đun của số phức \(z\dfrac{{1 + 2i}}{{1 - i}}\).

Xem đáp án

\(\begin{array}{l}z = \dfrac{{1 + 2i}}{{1 - i}} = \dfrac{{\left( {1 + 2i} \right).\left( {1 + i} \right)}}{{\left( {1 - i} \right)\left( {1 + i} \right)}}\\\,\,\,\, = \dfrac{{1 + 3i + 2.{i^2}}}{{1 - {i^2}}} = \dfrac{{ - 1 + 3.i}}{2}\\\,\,\,\, = \dfrac{{ - 1}}{2} + \dfrac{3}{2}i\\ \Rightarrow \left| z \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{3}{2}} \right)}^2}}  = \dfrac{{\sqrt {10} }}{2}\end{array}\)

Câu 7: Trắc nghiệm ID: 151184

Cho số dương a, biểu thức \(\sqrt a .\root 3 \of a \root 6 \of {{a^5}} \) viết dưới dạng lũy thừa hữu tỷ là:

Xem đáp án

Ta có: \(\sqrt a .\sqrt[3]{a}\sqrt[6]{{{a^5}}} = {a^{\dfrac{1}{2}}}.\,{a^{\dfrac{1}{3}}}.\,{a^{\dfrac{5}{6}}}\)\(\, = {a^{\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{5}{6}}} = {a^{\dfrac{5}{3}}}\)

Chọn đáp án D.

Câu 8: Trắc nghiệm ID: 151185

Tìm tập xác định của hàm số sau \(f(x) = \sqrt {{{\log }_2}{\dfrac{3 - 2x - {x^2}}{x + 1}}} \).

Xem đáp án

Tập xác định của hàm số:

\(\left\{ \begin{array}{l}{\log _2}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge 0\\\dfrac{{3 - 2x - {x^2}}}{{x + 1}} > 0;\,x \ne  - 1\end{array} \right. \\ \Leftrightarrow \dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge 1 \\ \Leftrightarrow \dfrac{{2 - 3x - {x^2}}}{{x + 1}} \ge 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}2 - 3x - {x^2} \ge 0\\x + 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}2 - 3x - {x^2} \le 0\\x + 1 < 0\end{array} \right.\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \in \left[ {\dfrac{{ - 3 - \sqrt {17} }}{2};\dfrac{{ - 3 + \sqrt {17} }}{2}} \right]\\x >  - 1\end{array} \right.\\\left\{ \begin{array}{l}x \in \left( { - \infty ;\dfrac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left[ {\dfrac{{ - 3 + \sqrt {17} }}{2}; + \infty } \right)\\x <  - 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x \in \left( { - 1;\dfrac{{ - 3 + \sqrt {17} }}{2}} \right]\\x \in \left( { - \infty ;\dfrac{{ - 3 - \sqrt {17} }}{2}} \right]\end{array} \right.\)

\( \Rightarrow \)\(\left( { - \infty ;\dfrac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left( { - 1;\dfrac{{ - 3 + \sqrt {17} }}{2}} \right]\)

Chọn đáp án A.

Câu 9: Trắc nghiệm ID: 151186

Cho hình (H) giới hạn bởi đường cong là \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi: 

Xem đáp án

Hình phẳng được giới hạn bởi đồ thị hàm số \(x = g\left( y \right)\) liên tục trên \(\left[ {a;b} \right]\), trục \(Oy\) và hai đường thẳng \(y = a;y = b\) quay quanh trục \(Oy\) ta được khối tròn xoay có thể tích là: \({V_y} = \pi \int\limits_a^b {{g^2}\left( y \right)} \;dy\)

Áp dụng vào bài toán, ta có \({y^2} + x = 0 \Rightarrow x =  - {y^2}\).

Đồ thị hàm số \(x =  - {y^2}\) liên tục trên \(\left[ {0;1} \right]\), trục Oy và hai đường thẳng \(y = 0,\;y = 1\)

Khi đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục Oy được tính bởi:

\(V = \pi \int\limits_0^1 {\left( { - {y^2}} \right){\,^2}dy}  = V = \pi \int\limits_0^1 {{y^4}\,dy} .\)

Chọn đáp án C.

Câu 10: Trắc nghiệm ID: 151187

Cho tích phân sau \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai? 

Xem đáp án

Ta có:

\(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \)

\(\;\;\;= \int\limits_0^{2004\pi } {\sqrt {1 - \left( {1 - 2{{\sin }^2}x} \right)} \;dx}  \)

\(\;\;\;= \int\limits_0^{2004\pi } {\sqrt 2 \left| {\sin x} \right|\;dx} \)

\(\;\;\;= \sqrt 2 \left| {\cos x} \right|\left| {_0^{2004\pi }} \right.\)

\( \to \) Đáp án C sai.

Chọn đáp án C.

Câu 12: Trắc nghiệm ID: 151189

Diện tích xung quanh của một hình nón tròn xoay nội tiếp tứ diện đều cạnh \(a\) là

Xem đáp án

Bán kính của hình nón là: \(r = \dfrac{{a\sqrt 3 }}{2}.\dfrac{1}{3} = \dfrac{{a\sqrt 3 }}{6}\) ; đường sinh \(l = \dfrac{{a\sqrt 3 }}{2}\)

Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi rl = \pi \dfrac{{a\sqrt 3 }}{6}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{\pi {a^2}}}{4}\)

Chọn A

Câu 13: Trắc nghiệm ID: 151190

Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\), \(\overrightarrow u  = k\overrightarrow a  - \overrightarrow b ;\,\overrightarrow v  = \overrightarrow a  + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì \(k\) bằng

Xem đáp án

\(\begin{array}{l}\overrightarrow u .\overrightarrow v \\ = \left( {k\overrightarrow a  - \overrightarrow b \,} \right)\left( {\overrightarrow a  + 2\overrightarrow b } \right) \\= 4k - 50 + \left( {2k - 1} \right)\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \dfrac{{2\pi }}{3}\\ =  - 6k - 45\end{array}\)

Câu 14: Trắc nghiệm ID: 151191

Cho \(\overrightarrow u  = \left( {2; - 1;1} \right),\overrightarrow v  = \left( {m;3; - 1} \right),\overrightarrow {\rm{w}}  = \left( {1;2;1} \right)\). Với giá trị nào của m thì ba vectơ trên đồng phẳng

Xem đáp án

Ta có:  \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( { - 2;m + 2;m + 6} \right),{\rm{    }}\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}}  = 3m + 8\)

\(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}}  = 0 \Leftrightarrow m =  - \dfrac{8}{3}\)

Câu 15: Trắc nghiệm ID: 151192

Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành.

Xem đáp án

Xét \(y = {x^4} - 3{x^2} - 5\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 4{x^3} - 6x\\y' = 0\\ \Rightarrow 4{x^3} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{{\sqrt 6 }}{2}\\x =  - \dfrac{{\sqrt 6 }}{2}\end{array} \right.\end{array}\)

Bảng biến thiên

Từ  bảng biến thiên, số giao điểm của đồ thị \(y = {x^4} - 3{x^2} - 5\) với  trục hoành là 2.

Cách khác:

Đặt \(t = {x^2} \ge 0\) ta được:

\({t^2} - 3t - 5 = 0\) có \(ac < 0\) nên pt có hai nghiệm t trái dấu (nghiệm dương nhận, nghiệm âm loại)

 

Do đó pt đã cho có \(2\) nghiệm phân biệt.

Câu 16: Trắc nghiệm ID: 151193

Giá trị của \({\log _a}\left( {\dfrac{{a^2}\root 3 \of {{a^2}} \root 5 \of {{a^4}} }{{\root {15} \of {{a^7}} }}} \right)\) bằng :

Xem đáp án

Ta có:

\({\log _a}\left( {\dfrac{{{a^2}\sqrt[3]{{{a^2}}}\sqrt[5]{{{a^4}}}}}{{\sqrt[{15}]{{{a^7}}}}}} \right)\)

\(= {\log _a}\left( {\dfrac{{{a^2}.{a^{\dfrac{2}{3}}}.{a^{\dfrac{4}{5}}}}}{{{a^{\dfrac{7}{{15}}}}}}} \right)\)

\(= {\log _a}\left( {\dfrac{{{a^{\dfrac{{52}}{{15}}}}}}{{{a^{\dfrac{7}{{15}}}}}}} \right)\)

\(= {\log _a}\left( {{a^3}} \right) = 3\)

Chọn đáp án A.

Câu 17: Trắc nghiệm ID: 151194

Cho \({4^x} + {4^{ - x}} = 23\). Khi đó biểu thức \(K = \dfrac{5 + {2^x} + {2^{ - x}}}{{1 - {2^x} - {2^{ - x}}}}\) có giá trị bằng :

Xem đáp án

Ta có: \({4^x} + {4^{ - x}} = 23 \)

\(\Leftrightarrow {\left( {{2^x}} \right)^2} + {\left( {{2^{ - x}}} \right)^2} = 23 \)

\(\Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} - {2.2^x}{.2^{ - x}} = 23\)

\( \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} = 25\)

\(\Leftrightarrow {2^x} + {2^{ - x}} = 5\)

Khi đó \(K = \dfrac{{5 + 5}}{{1 - \left( 5 \right)}} = \dfrac{{10}}{{ - 4}} =  - \dfrac{5}{2}\)

Chọn đáp án A.

Câu 18: Trắc nghiệm ID: 151195

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc với (ABC). Tính khoảng cách từ trọng tâm G của tam giác SAB đến (SAC)?

Xem đáp án

Gọi I là trung điểm của AB khi đó dựng \(IH \bot \left( {SAC} \right)\)

Khi đó \(IH = \dfrac{{OB}}{2} = \dfrac{{BD}}{4} = \dfrac{{a\sqrt 2 }}{4}\)

\(d\left( {G,\left( {SAC} \right)} \right) = \dfrac{2}{3}d\left( {I,\left( {SAC} \right)} \right)\)\(\, = \dfrac{2}{3}IH = \dfrac{{a\sqrt 2 }}{6}\)

Chọn B

Câu 20: Trắc nghiệm ID: 151197

Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Thể tích khối chóp \(M.BC{A_1}\) là:

Xem đáp án

\(\Delta ABC\)là tam giác đều cạnh \(a\)nên có diện tích \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Ta có \(AM = \dfrac{{A{A_1}}}{2} = \dfrac{a}{2}\)

Hai tứ diện \(MABC\)và \(M{A_1}BC\)có chung đỉnh\(C\), diện tích hai đáy \(MAB\)và \(M{A_1}B\)bằng nhau nên có thể tích bằng nhau, suy ra

\({V_{M.BC{A_1}}} = {V_{M.ABC}} = \dfrac{1}{3}AM.{S_{ABC}} \)\(\,= \dfrac{{{a^3}\sqrt 3 }}{{24}}\)

Chọn B.

Câu 21: Trắc nghiệm ID: 151198

Diện tích xung quanh của một hình nón tròn xoay ngoại tiếp tứ diện đều cạnh \(a\) là

Xem đáp án

Bán kính đáy của hình nón là: \(R = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)

Chiều cao của hình nón là: \(h = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt 6 }}{3}\)

Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi Rl = \pi \dfrac{{a\sqrt 3 }}{3}.a = \dfrac{{\pi {a^2}\sqrt 3 }}{3}\)

Chọn A.

Câu 22: Trắc nghiệm ID: 151199

Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là

Xem đáp án

\(\overrightarrow {AB}  = \left( {1;2;1} \right),\overrightarrow {AC}  = \left( {x - 2;y - 5;3} \right)\)

\(A,B,C\) thẳng hàng \( \Leftrightarrow \overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương\( \Leftrightarrow \dfrac{{x - 2}}{1} = \dfrac{{y - 5}}{2} = \dfrac{3}{1} \Leftrightarrow x = 5;y = 11\)

Câu 23: Trắc nghiệm ID: 151200

Số phức \(z = \dfrac{{1 - i}}{{1 + i}} - 3 + 4i\) có số phức liên hợp là:

Xem đáp án

\(\begin{array}{l}z = \dfrac{{1 - i}}{{1 + i}} - 3 + 4i\\\,\,\,\,\, = \dfrac{{{{\left( {1 - i} \right)}^2}}}{{1 - {i^2}}} - 3 + 4i\\\,\,\,\,\, =  - i - 3 + 4i =  - 3 + 3i\end{array}\)

Số phức liên hợp của z là: \(\overline z  =  - 3 - 3i\)

Câu 24: Trắc nghiệm ID: 151201

Trên mặt phẳng tọa độ, để tập hợp điểm biểu diễn các số phức z nằm trong phần gạch chéo ( kể cả biên ) ở  hình vẽ dưới đây thì điều kiện của z là:

 

Xem đáp án

Điều kiện của z là: \(|z| \le 1\) và phần ảo thuộc đoạn \(\left[ { - \dfrac{1}{2};\dfrac{1}{2}} \right]\).

Câu 25: Trắc nghiệm ID: 151202

Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị (C). Hệ số góc tiếp tuyến với (C) tại điểm M(- 1 ; 2) bằng:

Xem đáp án

\(\begin{array}{l}
y' = 3{x^2} - 2\\
\Rightarrow k = y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} - 2 = 1
\end{array}\)

Câu 26: Trắc nghiệm ID: 151203

Điều kiện của tham số m đề hàm số \(y = \dfrac{{ - {x^3}}}{ 3} + {x^2} + mx\) nghịch biến trên R là 

Xem đáp án

\(y =  - \dfrac{{{x^3}}}{3} + {x^2} + mx\)

Txđ : \(D = \mathbb{R}\)

\(y' =  - {x^2} + 2x + m\)

Hàm số \(y =  - \dfrac{{{x^3}}}{3} + {x^2} + mx\) nghịch biến trên \(\mathbb{R}\)

\(\begin{array}{l} \Leftrightarrow y' \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow  - {x^2} + 2x + m \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow \Delta ' \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow 1 + m \le 0\;\forall x \in \mathbb{R}\\ \Leftrightarrow m \le  - 1\end{array}\)

Câu 27: Trắc nghiệm ID: 151204

Hãy tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\). 

Xem đáp án

Ta có \(\int {\left( {4\cos x + \dfrac{1}{{{x^2}}}} \right)} \;dx \)\(\,= 4\sin x - \dfrac{1}{x} + C.\)

Chọn đáp án C.

Câu 28: Trắc nghiệm ID: 151205

Mệnh đề nào sau đây là sai ?

Xem đáp án

Ta có: \(\int\limits_b^c {f\left( x \right)} \;dx = \int\limits_b^a {f\left( x \right)\,dx + \int\limits_a^c {f\left( {x\,} \right)dx} } \)

\( \to \) Đáp án C sai.

Chọn đáp án C.

Câu 29: Trắc nghiệm ID: 151206

Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:

Xem đáp án

Ta có: \(\int {{{\sin }^3}x.\cos x\,dx}  = \int {{{\sin }^3}x\;d\left( {\sin x} \right)}\)\(\,  = \dfrac{1}{4}{\sin ^4}x + C.\)

Chọn đáp án B.

Câu 30: Trắc nghiệm ID: 151207

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.

Xem đáp án

Gọi G là trọng tâm tam giác ABC, I là trung điểm của AB

\(\begin{array}{l}\left. \begin{array}{l}GA = GB = GC\\SA = SB = SC\end{array} \right\} \Rightarrow SG \bot \left( {ABC} \right)\\CG = \dfrac{2}{3}CI = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\\SG = \sqrt {S{C^2} - C{G^2}} \\ = \sqrt {{{\left( {\dfrac{{a\sqrt 6 }}{3}} \right)}^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt 3 }}{3}\\V = \dfrac{1}{3}SG.{S_{ABC}} \\\;\;\;\;= \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{{12}}\end{array}\)

Chọn A

Câu 31: Trắc nghiệm ID: 151208

Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là

Xem đáp án

\(\overrightarrow {BA}  = \left( {1;0; - 1} \right),\overrightarrow {CA}  = \left( { - 1; - 1; - 1} \right),\overrightarrow {CB}  = \left( { - 2; - 1;0} \right)\)

\(\overrightarrow {BA} .\overrightarrow {CA}  = 0 \Rightarrow \)tam giác vuông tại \(A\) , \(AB \ne AC\) .

Câu 32: Trắc nghiệm ID: 151209

Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

Xem đáp án

Gọi I là trung điểm của AB, H là chân đường vuông góc của O lên mp (SAB)

\(\begin{array}{l}SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {{8^2} - {5^2}}  = \sqrt {39} \\OI = \sqrt {O{A^2} - I{A^2}}  = \sqrt {{5^2} - {4^2}}  = 3\\\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{I^2}}} = \dfrac{1}{{39}} + \dfrac{1}{9} = \dfrac{{16}}{{117}}\\ \Rightarrow OH = \dfrac{{3\sqrt {13} }}{4}\end{array}\)

Chọn B

Câu 33: Trắc nghiệm ID: 151210

Đồ thị hàm số \(y = \dfrac{{2x - 3} }{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là

Xem đáp án

\(y = \dfrac{{2x - 3}}{{x - 1}}\)

TXĐ : D=\(\mathbb{R}\backslash \left\{ 1 \right\}\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{2x - 3}}{{x - 1}} = 2\\ \Rightarrow TCN:y = 2\\\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} y =  - \infty \\\mathop {\lim }\limits_{x \to {1^ - }} y =  + \infty \end{array} \right\} \Rightarrow TCĐ:x = 1\end{array}\)

Câu 34: Trắc nghiệm ID: 151211

Cho hàm số \(y = {x^3} - 3x\). Mệnh đề nào dưới đây đúng ?

Xem đáp án

y=x– 3x

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0\\ \Rightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 1\end{array} \right.\end{array}\)

Từ bảng biến thiên, hàm số đồng biến trên \(( - \infty , - 1)\) và \((1, + \infty )\); nghịch biến trên \(( - 1,1)\)

Câu 35: Trắc nghiệm ID: 151212

Giá trị của \({\log _{{a^5}}}a\,\,\,(a > 0,\,\,a \ne 1)\) bằng:

Xem đáp án

Ta có: \({\log _{{a^5}}}a = \dfrac{1}{5}{\log _a}a = \dfrac{1}{5}.\)

Chọn đáp án A.

Câu 36: Trắc nghiệm ID: 151213

Giá trị nhỏ nhất của hàm số sau \(y = {e^{{x^2}}}\) là: 

Xem đáp án

Ta có: \({x^2} \ge 0 \Rightarrow {e^{{x^2}}} \ge {e^0} = 1\)

Chọn đáp án A.

Câu 37: Trắc nghiệm ID: 151214

Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y =  - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :

Xem đáp án

Hình phẳng gới hạn bởi đồ thị hàm số \(y = {\sin ^2}x,\,\,y =  - {\cos ^2}x\) lên tục trên đoạn \(\left[ {\pi ;2\pi } \right]\) và hai đường thẳng \(x = \pi ,\,x = 2\pi \). Diện tích hình phẳng đó được xác định bởi công thức:

\(S = \int\limits_\pi ^{2\pi } \left| {{{\sin }^2}x - \left({  - {{\cos }^2}x} \right)} \right|dx \\\;\;\;=  \int\limits_\pi ^{2\pi } \left| {{{\sin }^2}x + {{\cos }^2}x} \right|dx \)\(\;\;\;= \int\limits_\pi ^{2\pi } {1.dx}  = x\left| {_\pi ^{2\pi }} \right.  = 2\pi  - \pi  = \pi \)

Chọn đáp án A.

Câu 38: Trắc nghiệm ID: 151215

Gọi \(\int {{{2009}^x}\,dx}  = F(x) + C\) . Khi đó F(x) là hàm số:

Xem đáp án

Áp dụng công thức \(\int {{a^x}\;dx}  = \dfrac{{{a^x}}}{{\ln a}}\; + C\)

Ta có: \(\int {{{2009}^x}\,dx}  = \dfrac{{{{2009}^x}}}{{\ln 2009}} + C\)

Chọn đáp án B.

Câu 39: Trắc nghiệm ID: 151216

Mô đun của số phức z thỏa mãn \(z + \left( {2 + i} \right)\overline z  = 3 + 5i\) là:

Xem đáp án

Đặt z = a + bi      \(a,b \in \mathbb{Z}\)

\(\begin{array}{l}z + \left( {2 + i} \right)\overline z  = 3 + 5i\\ \Leftrightarrow \left( {a + bi} \right) + \left( {2 + i} \right)\left( {a - bi} \right) = 3 + 5i\\ \Leftrightarrow 3a + b + ai - bi = 3 + 5i\\ \Leftrightarrow 3a + b + \left( {a - b} \right)i = 3 + 5i\\ \Leftrightarrow \left\{ \begin{array}{l}3a + b = 3\\a - b = 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 3\end{array} \right.\left( {tm} \right)\\ \Rightarrow z = 2 - 3i\\ \Rightarrow \left| z \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {13} \end{array}\)

Câu 40: Trắc nghiệm ID: 151217

Hãy chọn phát biểu đúng. Trong tập số phức C

Xem đáp án

Trong tập số phức C, ta có: \(\overline {{z_1} + {z_2}}  = \overline {{z_1}}  + \overline {{z_2}} \). 

Câu 41: Trắc nghiệm ID: 151218

Công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h

Xem đáp án

Công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h là \(V = Bh.\) 

Câu 42: Trắc nghiệm ID: 151219

Chọn câu đúng. Trung điểm các cạnh của một tứ diện đều là

Xem đáp án

Trung điểm các cạnh của một tứ diện đều là các đỉnh của một hình bát diện đều.  

Câu 43: Trắc nghiệm ID: 151220

Cho hai điểm \(A,B\) cố định. Tập hợp các điểm \(M\) trong không gian sao cho diện tích tam giác \(MAB\) không đổi là

Xem đáp án

Gọi d là khoảng cách từ điểm M đến đường thẳng AB.

Suy ra \({S_{MAB}} = \dfrac{1}{2}.d\left( {M,AB} \right).AB = \dfrac{1}{2}d.AB\)

Vì \({S_{MAB}};AB\)  là hằng số nên d không đổi .

Vậy tập hợp các điểm M thỏa mãn yêu cầu bài toán là một mặt trụ tròn xoay.

Chọn B.

Câu 44: Trắc nghiệm ID: 151221

Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng

Xem đáp án

Gọi a là chiều cao của khối trụ suy ra khối trụ có bán kính bằng \(\dfrac{a}{2}\) .

Ta có: \({S_{xq}} = 2\pi .\dfrac{a}{2}.a = 4\pi  \Leftrightarrow a = 2\)

Diện tích toàn phần của khối trụ là: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 4\pi  + 2.\pi {.1^2} = 6\pi \)

Chọn A.

Câu 45: Trắc nghiệm ID: 151222

Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng

Xem đáp án

\(\overrightarrow {AB}  = \left( { - 1;0;1} \right),\overrightarrow {AC}  = \left( {1;1;1} \right)\) .  \({S_{\Delta ABC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {AB} .\overrightarrow {AC} } \right]} \right| = \dfrac{{\sqrt 6 }}{2}\)

Câu 46: Trắc nghiệm ID: 151223

Trong các hàm số cho sau đây, hàm số nào đồng biến trên R ? 

Xem đáp án

\(y = {x^3} + 1\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2}\\y' = 0 \Rightarrow 3{x^2} = 0 \Rightarrow x = 0\end{array}\)

Từ bbt, hàm số đồng biến trên \(\mathbb{R}\)

Câu 47: Trắc nghiệm ID: 151224

Số nghiệm của phương trình \({\log _5}(5x) - {\log _{25}}(5x) - 3 = 0\) là:

Xem đáp án

Điều kiện: \(5x > 0 \Rightarrow x > 0\)

Ta có: \({\log _5}(5x) - {\log _{25}}(5x) - 3 = 0 \)

\(\Leftrightarrow {\log _5}(5x) - {\log _{{5^2}}}(5x) - 3 = 0\)

\( \Leftrightarrow {\log _5}(5x) - \dfrac{1}{2}{\log _5}(5x) = 3\)

\( \Leftrightarrow \dfrac{1}{2}{\log _5}(5x) = 3 \)

\(\Leftrightarrow {\log _5}\left( {5x} \right) = 6\)

\( \Leftrightarrow 5x = {5^6} \Leftrightarrow x = {5^5}\).

Vậy phương trình đã cho có 1 nghiệm

Chọn đáp án C.

Câu 48: Trắc nghiệm ID: 151225

Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng

Xem đáp án

Gọi 3 đỉnh theo thứ tự là \(A,B,C\)

\(\overrightarrow {AB}  = \left( {1;2;3} \right),\overrightarrow {AC}  = \left( {6;6;4} \right)\)

\({S_{hbh}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{14}^2} + {{\left( { - 6} \right)}^2}}  = 2\sqrt {83} \)

Câu 49: Trắc nghiệm ID: 151226

Gọi \({z_1}\,,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} + 2z + 10 = 0\). Tính \(|{z_1}{|^2} + |{z_2}{|^2}\).

Xem đáp án

\({z^2} + 2z + 10 = 0\)

Có \(\Delta ' = {\left( {b'} \right)^2} - ac = 1 - 10 =  - 9 = {\left( {3i} \right)^2}\)

\(\Delta \) có hai căn bậc hai là 3i và – 3i

Phương trình có hai nghiệm \({z_1} = {\rm{ }} - 1{\rm{ }} + {\rm{ }}3i\) và \({z_2} = {\rm{ }} - 1{\rm{ }}--{\rm{ }}3i\)

\(\begin{array}{l}\left| {{z_1}} \right| = \left| {{z_2}} \right| = \sqrt {10} \\ \Rightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} = 10\\ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 20\end{array}\)

Câu 50: Trắc nghiệm ID: 151227

Phương trình \({\log _2}x + {\log _2}(x - 1) = 1\) có tập nghiệm là:

Xem đáp án

Điều kiện: \(x > 1.\)

Ta có: \({\log _2}x + {\log _2}(x - 1) = 1\)

 

\(\Leftrightarrow \log {}_2\left[ {x\left( {x - 1} \right)} \right] = 1\)

\(\Leftrightarrow {x^2} - x = 2\)

\( \Leftrightarrow {x^2} - x - 2 = 0 \)

\(\Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right) = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}x =  - 1(ktm)\\x = 2(tm)\end{array} \right.\)

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ { 2} \right\}\)

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »