Kết quả của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapeaabaGaamiEaiaadwgadaahaaWcbeqaaiaadIhaaaaabeqa % b0Gaey4kIipakiaabsgacaWG4baaaa!3EB4! I = \int {x{e^x}} {\rm{d}}x\) là
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2
% da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda
% aaGaamyzamaaCaaaleqabaGaamiEaaaakiabgUcaRiaadoeaaaa!3E49!
I = \frac{{{x^2}}}{2}{e^x} + C\)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2
% da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda
% aaGaamyzamaaCaaaleqabaGaamiEaaaakiabgUcaRiaadwgadaahaa
% WcbeqaaiaadIhaaaGccqGHRaWkcaWGdbaaaa!4149!
I = \frac{{{x^2}}}{2}{e^x} + {e^x} + C\)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2
% da9iaadIhacaWGLbWaaWbaaSqabeaacaWG4baaaOGaeyOeI0Iaamyz
% amaaCaaaleqabaGaamiEaaaakiabgUcaRiaadoeaaaa!3F95!
I= x{e^x} - {e^x} + C\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2
% da9iaadwgadaahaaWcbeqaaiaadIhaaaGccqGHRaWkcaWG4bGaamyz
% amaaCaaaleqabaGaamiEaaaakiabgUcaRiaadoeaaaa!3F8A!
I = {e^x} + x{e^x} + C\)
Lời giải của giáo viên
Cách 1: Sử dụng tích phân từng phần ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapeaabaGaamiEaiaadwgadaahaaWcbeqaaiaadIhaaaaabeqa % b0Gaey4kIipakiaabsgacaWG4bGaeyypa0Zaa8qaaeaacaWG4baale % qabeqdcqGHRiI8aOGaaGPaVlaabsgacaWGLbWaaWbaaSqabeaacaWG % 4baaaOGaeyypa0JaamiEaiaadwgadaahaaWcbeqaaiaadIhaaaGccq % GHsisldaWdbaqaaiaadwgadaahaaWcbeqaaiaadIhaaaaabeqab0Ga % ey4kIipakiaabsgacaWG4bGaeyypa0JaamiEaiaadwgadaahaaWcbe % qaaiaadIhaaaGccqGHsislcaWGLbWaaWbaaSqabeaacaWG4baaaOGa % ey4kaSIaam4qaiaac6caaaa!5BD4! I = \int {x{e^x}} {\rm{d}}x = \int x \,{\rm{d}}{e^x} = x{e^x} - \int {{e^x}} {\rm{d}}x = x{e^x} - {e^x} + C.\)
Cách 2: Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmysayaafa % Gaeyypa0ZaaeWaaeaacaWG4bGaamyzamaaCaaaleqabaGaamiEaaaa % kiabgkHiTiaadwgadaahaaWcbeqaaiaadIhaaaGccqGHRaWkcaWGdb % aacaGLOaGaayzkaaWaaWbaaSqabeaakiadacUHYaIOaaGaeyypa0Ja % amyzamaaCaaaleqabaGaamiEaaaakiabgUcaRiaadIhacaWGLbWaaW % baaSqabeaacaWG4baaaOGaeyOeI0IaamyzamaaCaaaleqabaGaamiE % aaaakiabg2da9iaadIhacaWGLbWaaWbaaSqabeaacaWG4baaaOGaai % Olaaaa!5348! I' = {\left( {x{e^x} - {e^x} + C} \right)^\prime } = {e^x} + x{e^x} - {e^x} = x{e^x}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho mặt phẳng P đi qua các điểm A ( -2; 0 ; 0),B( 0; 3; 0) ,C( 0; 0 ; -3) . Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiqadk % eagaqbaiabgwQiEjaadkeaceWGdbGbauaaaaa!3AD8! AB' \bot BC'\) . Tính thể tích V của khối lăng trụ đã cho.
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaciiBaiaac6gadaqadaqaaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaI5aaacaGLOaGaayzkaaGaaeizaiaadIhaaSqaai % aaicdaaeaacaaI0aaaniabgUIiYdGccqGH9aqpcaWGHbGaciiBaiaa % c6gacaaI1aGaey4kaSIaamOyaiGacYgacaGGUbGaaG4maiabgUcaRi % aadogaaaa!4E85! \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right){\rm{d}}x} = a\ln 5 + b\ln 3 + c\), trong đó a,b ,c là các số nguyên. Giá trị của biểu thức T = a + b + c là
Trong không gian ( Oxyz) , cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B ,C . Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC .
Cho đa giác đều 32 cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một hình chữ nhật là
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d vuông góc với mặt phẳng (P):4x - z + 3 = 0 . Vec-tơ nào dưới đây là một vec-tơ chỉ phương của đường thẳng d?
Trong không gian với hệ trục tọa độ Oxyz cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcacqGH9aqpcqGHsisldaWhcaqaaiaadMgaaiaawEni % aiabgUcaRiaaikdadaWhcaqaaiaadQgaaiaawEniaiabgkHiTiaaio % dadaWhcaqaaiaadUgaaiaawEniaaaa!45B2! \overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) . Tọa độ của vectơ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcaaaa!388E! \overrightarrow a \) là:
Trong không gian với hệ trục tọa độ Oxyz, cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGpbGaamyqaaGaay51GaGaeyypa0JaaGOmamaaFiaabaGaamyAaaGa % ay51GaGaey4kaSIaaGOmamaaFiaabaGaamOAaaGaay51GaGaey4kaS % IaaGOmamaaFiaabaGaam4AaaGaay51Gaaaaa!4629! \overrightarrow {OA} = 2\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k\), B( -2; 2 ; 0) và C( 4; 1 ; -1 ). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.
Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
Cho số phức \(z\) . Gọi A,B lần lượt là các điểm trong mặt phẳng (Oxy) biểu diễn các số phức \(z\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIXaGaey4kaSIaamyAaaGaayjkaiaawMcaaiaadQhaaaa!3B07! \left( {1 + i} \right)z\) . Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6baacaGLhWUaayjcSdaaaa!3A15! \left| z \right|\) biết diện tích tam giác OAB bằng 8.
Kí hiệu \(z_{1}\) là nghiệm phức có phần ảo âm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadQ % hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaGOnaiaadQha % cqGHRaWkcaaIXaGaaG4naiabg2da9iaaicdacaGGUaaaaa!40DB! 4{z^2} - 16z + 17 = 0.\) Trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2 % da9maabmaabaGaaGymaiabgUcaRiaaikdacaWGPbaacaGLOaGaayzk % aaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaaG % 4maaqaaiaaikdaaaGaamyAaaaa!4219! w = \left( {1 + 2i} \right){z_1} - \frac{3}{2}i\)?
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{mx + 4}}{{x + m}}\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\)?
Cho hàm số \(y = f (x)\) liên tục, luôn dương trên \([0;3]\) và thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaaIWaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0 % JaaGinaaaa!434A! I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} = 4\). Khi đó giá trị của tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaaIXaGaey4k % aSIaciiBaiaac6gadaqadaqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaaaiaawIcacaGLPaaaaaGccqGHRaWkcaaI0aaacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYd % aaaa!4AD3! K = \int\limits_0^3 {\left( {{e^{1 + \ln \left( {f\left( x \right)} \right)}} + 4} \right){\rm{d}}x} \) là:
. Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaiodaaaGccqGHsislcaaIZaGaamiEamaaCaaaleqabaGaaGOmaa % aakiabgkHiTiaaiAdacaWG4bGaey4kaSIaaGymaaaa!443C! f\left( x \right) = {x^3} - 3{x^2} - 6x + 1\). Phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % WGMbWaaeWaaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa % ey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdaaSqabaGccq % GH9aqpcaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIa % aGOmaaaa!454C! \sqrt {f\left( {f\left( x \right) + 1} \right) + 1} = f\left( x \right) + 2\) có số nghiệm thực là
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA , SB, SC ,SD lần lượt tại M,N ,P ,Q . Gọi M',N' ,Q',P' lần lượt là hình chiếu vuông góc của M,N, P,Q lên mặt phẳng (ABCD) . Tính tỉ số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGtbGaamytaaqaaiaadofacaWGbbaaaaaa!394C! \frac{{SM}}{{SA}}\) để thể tích khối đa diện MNPQ.M'N'P'Q' đạt giá trị lớn nhất.