Một bình chứa 16 viên bi trong đó có 7 viên bi trắng, 6 viên bi đen và 3 viên bi đỏ. Lấy ngẫu nhiên trong bình đó 3 viên bi. Tính xác suất sao cho cả 3 viên bi được lấy ra không có viên nào màu đỏ.
A. \(\frac{{143}}{{280}}.\)
B. \(\frac{1}{{560}}.\)
C. \(\frac{1}{{16}}\)
D. \(\frac{1}{{28}}.\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {3; - 2;1} \right),\,B\left( {0;2;1} \right),\,C\left( { - 1;2;0} \right)\). Phương trình mặt phẳng (ABC) là
Tập xác định của hàm số \(y = {\log _7}\frac{{2x - 5}}{{1 + x}}\) là
Tính thể tich của khối chóp tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Bảng phía dưới là bảng biến thiên của hàm số nào sau đây?
Trong bốn giới hạn sau đây, giới hạn nào có kết quả bằng 0?
Dạng \(a+bi\) của số phức \(\frac{1}{{3 + 2i}}\) là số phức nào dưới đây?
Cho hình bình hành ABCD tâm I. Kết luận nào sau đây sai?(\({T_{\overrightarrow u }}\) là ký hiệu phép tịnh tiến theo véc tơ \(\overrightarrow u \))
Cho \(x, y\) là các số thực dương thỏa mãn \(xy \le 2x - 1\). Giá trị nhỏ nhất của biểu thức \(S = \frac{{5\left( {x + 2y} \right)}}{y} + \ln \frac{{y + 2x}}{x}\) bằng \(a+\ln b\). Tính \(a+b\).
Tính thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng \(a\sqrt 2 \), cạnh bên bằng \(2a\).
Phương trình \(\log \left( {x - 2} \right) = \log \left( {{x^2} - 4x + m} \right)\) có nghiệm duy nhất khi và chỉ khi
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;3;2) và đường thẳng \((d'):\,\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình đường thẳng (d) qua M, vuông góc và cắt (d') là
Trong các đa diện sau, đa diện nào luôn nội tiếp được trong một mặt cầu:
Tính thể tích hình trụ có bán kính đáy R và chiều cao bằng \(R\sqrt 3 \).
Cho hàm số \(y = f\left( x \right) = {\rm{a}}{{\rm{x}}^4} + b{{\rm{x}}^2} + c\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) + 3 = 0\) bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Hàm số \(y=f(x)\) nghịch biến trên khoảng nào dưới đây?