Lời giải của giáo viên
\({u_n} = {u_1} + (n - 1)d \Rightarrow \,\,d = \frac{{{u_n} - {u_1}}}{{n - 1}} = \frac{{24 - 3}}{{8 - 1}} = 3\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ba điểm \(A,\text{ }B,\text{ }M\) lần lượt là điểm biểu diễn của các số phức \(-4,\,\text{ }4i,\,\text{ }x+3i\). Với giá trị thực nào của x thì \(A,\text{ }B,\text{ }M\) thẳng hàng?
Biết \(\bar z = {\left( {\sqrt 2 + i} \right)^2}.\left( {1 - \sqrt 2 i} \right)\). Phần ảo của số phức z là
Một đại lý xăng dầu cần làm một cái bồn dầu hình trụ bằng tôn có thể tích \(16\pi \,{m^3}\). Tìm bán kính đáy r của hình trụ sao cho hình trụ được làm ra ít tốn nguyên vật liệu nhất.
Tính giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 3{x^3} + x + 1} \right)\)
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - 3y + 4z = 2016\). Véctơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P) ?
Trong không gian Oxyz, cho điểm \(A\left( -3;2;-3 \right)\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-3}{-1}\) và \({{d}_{2}}:\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-5}{3}\). Phương trình mặt phẳng chứa d1 và d2 có dạng
Tìm nguyên hàm của hàm số \(f\left( x \right) = \ln 4x\).
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 - 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay xung quanh trục Ox. Thể tích khối tròn xoay tạo thành bằng
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) và các trục tọa độ.
Hàm số \(y = \frac{{{x^3}}}{3} - {x^2} + x\) đồng biến trên khoảng nào sau đây?
Tìm nguyên hàm của hàm số \(f\left( x \right) = 2x + 1\).
Trong không gian Oxyz, cho điểm \(I\left( 1;3;-2 \right)\) và đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\). Phương trình mặt cầu (S) có tâm là điểm I và cắt \(\Delta \) tại hai điểm phân biệt A, B sao cho đoạn thẳng AB có độ dài bằng 4 có phương trình là