Lời giải của giáo viên
Khi x=0 thì y=0; x=1 thì y=-1.
Suy ra đường thẳng đi qua hai điểm \(O\left( 0;0 \right)\) và \(A\left( 1;-1 \right)\). Véctơ chỉ phương của đường thẳng là \(\overrightarrow{OA}=\left( 1;-1 \right)\), từ đó véctơ pháp tuyến là \(\overrightarrow{n}=\left( 1;1 \right)\).
Vì thế đường thẳng có phương trình \(1.\left( x-1 \right)+1.\left( y-0 \right)=0 \Leftrightarrow x+y=0 \Leftrightarrow y=-x\).
Phương trình hoành độ giao điểm giữa đồ thị hàm số \(y={{x}^{4}}-2{{x}^{2}}\) và đường thẳng y=-x là:
\(\begin{array}{l} {x^4} - 2{x^2} = - x \Leftrightarrow x\left( {{x^3} - 2x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^3} - 2x + 1 = 0 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ \left( {x - 1} \right)\left( {{x^2} + x - 1} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = \frac{{ - 1 + \sqrt 5 }}{2}\\ x = \frac{{ - 1 - \sqrt 5 }}{2} \end{array} \right. \end{array}\)
Vì thế \(m=\frac{-1+\sqrt{5}}{2}, n=\frac{-1-\sqrt{5}}{2}\) hoặc \(m=\frac{-1-\sqrt{5}}{2}, n=\frac{-1+\sqrt{5}}{2}\).
Vậy \(S={{m}^{2}}+{{n}^{2}}={{\left( \frac{-1+\sqrt{5}}{2} \right)}^{2}}+{{\left( \frac{-1-\sqrt{5}}{2} \right)}^{2}}=3\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian tọa độ Oxyz, đường thẳng \(\left( d \right):\frac{x+5}{2}=\frac{y-7}{-8}=\frac{z+13}{9}\) có một véc tơ chỉ phương là
Nghiệm của bất phương trình \({{3}^{x+2}}\ge \frac{1}{9}\) là
Cho phương trình: \({{2}^{{{x}^{3}}+{{x}^{2}}-2x+m}}-{{2}^{{{x}^{2}}+x}}+{{x}^{3}}-3x+m=0\). Tập các giá trị để bất phương trình có ba nghiệm phân biệt có dạng \(\left( a\,;\,b \right)\). Tổng a+2b bằng:
Cho hàm số \(f\left( x \right)=\frac{1}{4}{{x}^{4}}-m{{x}^{3}}+\frac{3}{2}\left( {{m}^{2}}-1 \right){{x}^{2}}+\left( 1-{{m}^{2}} \right)x+2019\) với m là tham số thực. Biết rằng hàm số \(y=f\left( \left| x \right| \right)\) có số điểm cực trị lớn hơn 5 khi \(a<{{m}^{2}}<b+2\sqrt{c}\,\left( a,\,b,\,c\,\in \mathbb{R} \right)\). Tích abc bằng
Giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{{{x}^{2}}-8x}{x+1}\) trên đoạn \(\left[ 1;3 \right]\) bằng
Đường tiệm cận ngang, đường tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-2}\) lần lượt có phương trình là
Tổ 1 lớp 11A có 6 nam và 7 nữ; tổ 2 có 5 nam và 8 nữ. Chọn ngẫu nhiên mỗi tổ một học sinh. Xác suất để 2 học sinh được chọn đều là nữ là
Trong không gian Oxyz, cho hai điểm \(A\left( 2\,;\,3\,;\,-5 \right), B\left( -4\,;\,1\,;\,3 \right)\). Viết phương trình mặt cầu đường kính AB.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-4z-25=0\). Tìm tọa độ tâm I và bán kính R của mặt cầu \(\left( S \right)\).
Cho tứ diện ABCD có AC=AD và BC=BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?
Giá trị của tích phân \(I=\int\limits_{0}^{1}{\frac{x}{x+1}}\text{d}x\) là
Trong hình vẽ bên, điểm A biểu diễn số phức \({{z}_{1}}\), điểm B biểu diễn số phức \({{z}_{2}}\) sao cho điểm B đối xứng với điểm A qua gốc tọa độ O. Tìm \(\left| z \right|\) biết số phức \(z={{z}_{1}}+3{{z}_{2}}\).
Trong không gian Oxyz, mặt phẳng \(\left( \alpha \right):x-y+2z-3=0\) đi qua điểm nào dưới đây?
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác đều cạnh bằng a và \(\left( {A}'BC \right)\) hợp với mặt đáy ABC một góc \(30{}^\circ \). Tính thể tích V của khối lăng trụ \(ABC.{A}'{B}'{C}'\).
Trong không gian với hệ tọa độ Oxyz, đường thẳng \(\Delta \) đi qua điểm \(A\left( -2\,;\,4\,;\,3 \right)\) và vuông góc với mặt phẳng \(\left( \alpha \right):\,2x-3y+6z+19=0\) có phương trình là