Một hình trụ có bán kính đáy R = 70cm, chiều cao hình trụ h = 20cm. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?
A. 200cm
B. 100cm
C. 140cm
D. 80cm
Lời giải của giáo viên
Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO' của hình trụ.
Dựng đường sinh AA', ta có
\(\left\{ \begin{array}{l} CD \bot AA'\\ CD \bot AD \end{array} \right. \Rightarrow CD \bot \left( {AA'D} \right) \Rightarrow CD \bot A'D\)
Suy ra A'C là đường kính đáy nên
\(A'C = 2R = 140{\rm{cm}}{\rm{.}}\)
Xét tam giác vuông AA'C, ta có
\(AC = \sqrt {AA{'^2} + A'{C^2}} = 100\sqrt 2 {\rm{cm}}{\rm{.}}\)
Suy ra cạnh hình vuông bằng 100cm
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ba điểm \(A,\text{ }B,\text{ }M\) lần lượt là điểm biểu diễn của các số phức \(-4,\,\text{ }4i,\,\text{ }x+3i\). Với giá trị thực nào của x thì \(A,\text{ }B,\text{ }M\) thẳng hàng?
Biết \(\bar z = {\left( {\sqrt 2 + i} \right)^2}.\left( {1 - \sqrt 2 i} \right)\). Phần ảo của số phức z là
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - 3y + 4z = 2016\). Véctơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P) ?
Một đại lý xăng dầu cần làm một cái bồn dầu hình trụ bằng tôn có thể tích \(16\pi \,{m^3}\). Tìm bán kính đáy r của hình trụ sao cho hình trụ được làm ra ít tốn nguyên vật liệu nhất.
Tính giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 3{x^3} + x + 1} \right)\)
Tìm nguyên hàm của hàm số \(f\left( x \right) = \ln 4x\).
Trong không gian Oxyz, cho điểm \(A\left( -3;2;-3 \right)\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-3}{-1}\) và \({{d}_{2}}:\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-5}{3}\). Phương trình mặt phẳng chứa d1 và d2 có dạng
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 - 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay xung quanh trục Ox. Thể tích khối tròn xoay tạo thành bằng
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) và các trục tọa độ.
Hàm số \(y = \frac{{{x^3}}}{3} - {x^2} + x\) đồng biến trên khoảng nào sau đây?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 3y + z - 1 = 0\). Tính khoảng cách d từ điểm M(1;2;1) đến mặt phẳng (P).
Tìm nguyên hàm của hàm số \(f\left( x \right) = 2x + 1\).