Một hình trụ có hai đáy là hai hình tròn (O;r) và (O’;r). Khoảng cách giữa hai đáy là \(\text{OO}'=r\sqrt{3}\). Một hình nón có đỉnh O và có đáy là hình tròn (O’;r). Gọi S1 là diện tích xung quanh của hình trụ và S2 là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\)
A. \(\frac{{{S_1}}}{{{S_2}}} = \frac{2}{{\sqrt 3 }}\)
B. \(\frac{{{S_1}}}{{{S_2}}} = 2\sqrt 3 \)
C. \(\frac{{{S_1}}}{{{S_2}}} = 2\)
D. \(\frac{{{S_1}}}{{{S_2}}} = \sqrt 3 \)
Lời giải của giáo viên
Diện tích xung quanh của hình trụ : \({{S}_{1}}=2\pi rh=2\pi r.r\sqrt{3}=2\pi \sqrt{3}{{r}^{2}}\)
\(\Delta \text{OO }\!\!'\!\!\text{ A}\)vuông tại O’ \(\Rightarrow OA=\sqrt{OO{{'}^{2}}+O'{{A}^{2}}}=\sqrt{3{{r}^{2}}+{{r}^{2}}}=2r\)
Diện tích xung quanh của hình nón: \({{S}_{xq}}=\pi rl=\pi r.2r=2\pi {{r}^{2}}=>\frac{{{S}_{1}}}{{{S}_{2}}}=\sqrt{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Tâm mặt cầu ngoại tiếp hình tròn S.ABCD là điểm I với
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\)
Mặt cầu có bán kính a thì có diện tích xung quang bằng
Giả sử \(m=-\frac{a}{b},a,b\in {{\mathbb{Z}}^{+}},\left( a,b \right)=1\) là giá trị thực của tham số m để đường thẳng d:y=-3x+m cắt đồ thị hàm số \(y=\frac{2x+1}{x-1}\left( C \right)\) tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng \(\Delta :x-2y-2=0\) với O là gốc tọa độ. Tính a+2b.
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2019] để hàm số \(y=m{{x}^{4}}+\left( m+1 \right){{x}^{2}}+1\) có đúng một điểm cực đại?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số như hình vẽ dưới. Hỏi hàm số đó có bao nhiêu điểm cực trị?
Hàm số \(y=\frac{{{x}^{3}}}{3}-3{{x}^{2}}+5x-2\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số y = f (x) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Cho số dương a và \(m,n\in \mathbb{R}\). Mệnh đề nào sau đây đúng?
Cho hàm số \(f\left( x \right)=\frac{x-{{m}^{2}}}{x+8}\) với m là tham số thực. Giả sử \({{m}_{0}}\) là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị \({{m}_{0}}\) thuộc khoảng nào trong các khoảng cho dưới đây?
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Tìm tất cả giá trị thực của tham số m sao cho phương trình \(f\left( x \right)=m\) có đúng hai nghiệm.
Cho khối chóp tứ giác đều S.ABCD có thể tích bằng \({{a}^{3}}\) và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy
Tính giá trị biểu thức \(P=\frac{{{\left( 4+2\sqrt{3} \right)}^{2018}}.{{\left( 1-\sqrt{3} \right)}^{2017}}}{{{\left( 1+\sqrt{3} \right)}^{2018}}}\)