Một khối đồ chơi gồm một khối nón \(\left( N \right)\) xếp chồng lên một khối trụ \(\left( T \right)\). Khối trụ \(\left( T \right)\) có bán kính đáy và chiều cao lần lượt là \({{r}_{1}},{{h}_{1}}\). Khối nón \(\left( N \right)\) có bán kính đáy và chiều cao lần lượt là \({{r}_{2}},{{h}_{2}}\) thỏa mãn \({{r}_{2}}=\frac{2}{3}{{r}_{1}}\) và \({{h}_{2}}={{h}_{1}}\) (tham khảo hình vẽ bên). Biết rằng thể tích của toàn bộ khối đồ chơi bằng \(124c{{m}^{3}}\), thể tích khối nón \(\left( N \right)\) bằng:
A. \(62c{{m}^{3}}\)
B. \(15c{{m}^{3}}\)
C. \(108c{{m}^{3}}\)
D. \(16c{{m}^{3}}\)
Lời giải của giáo viên
Ta có:
\(\begin{align} & 124=\pi .r_{1}^{2}.{{h}_{1}}+\frac{1}{3}\pi .r_{2}^{2}.{{h}_{2}}\Leftrightarrow 124=\pi {{\left( \frac{3}{2}{{r}_{2}} \right)}^{2}}{{h}_{2}}+\frac{1}{3}\pi .r_{2}^{2}.{{h}_{2}} \\ & \Leftrightarrow 124=\frac{31}{12}\pi .r_{2}^{2}.{{h}_{2}}\Rightarrow \frac{1}{3}\pi .r_{2}^{2}.{{h}_{2}}=16\Rightarrow {{V}_{\left( N \right)}}=16\left( c{{m}^{3}} \right) \\ \end{align}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Họ nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}+{{x}^{2}}\) là:
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( a{{b}^{2}} \right)\) bằng
Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( 1;-2;3 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):x-2y+2=0\) là:
Thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng a và độ dài cạnh bên bằng 2a là:
Tiếp tuyến của đồ thị hàm số \(y=-{{x}^{3}}+3x-2\) tại điểm có hoành độ \({{x}_{0}}=2\) có phương trình là
Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng \(60{}^\circ \). Thể tích của khối nón đã cho là:
Đồ thị hàm số \(y={{x}^{4}}-4{{x}^{2}}+2\) cắt đường thẳng \(d:y=m\) tại 4 điểm phân biệt và tạo ra các hình phẳng có diện tích \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) thỏa mãn \({{S}_{1}}+{{S}_{2}}={{S}_{3}}\) (như hình vẽ). Giá trị m thuộc khoảng nào sau đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \(f'\left( x \right)={{\left( x-2 \right)}^{4}}\left( x-1 \right)\left( x+3 \right)\sqrt{{{x}^{2}}+3}\). Tìm số điểm cực trị của hàm số \(y=f\left( x \right)\):
Trong không gian \(Oxyz\), đường thẳng \(d:\frac{x-1}{2}=\frac{y}{1}=\frac{z}{3}\) đi qua điểm nào dưới đây?
Tìm nghiệm của phương trình \({{\log }_{2}}\left( x-1 \right)=3.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Số điểm cực trị của hàm số đã cho là:
Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol \(\left( P \right):y={{x}^{2}}\) và đường thẳng d:y=2x quay xung quanh trục \(Ox\).
Xét các số phức z thỏa mãn \(\left| z \right|=1\). Đặt \(\text{w}=\frac{2\text{z}-i}{2+iz}\), giá trị lớn nhất của biểu thức \(P=\left| \text{w}+3i \right|\) là
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\) và \(\int\limits_{1}^{2}{2g\left( x \right)dx}=8\). Khi đó \(\int\limits_{1}^{2}{\left[ f\left( x \right)+g\left( x \right) \right]dx}\) bằng: