Lời giải của giáo viên
\(V = \pi {R^2}h = \pi {R^3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Thể tích của khối nón có chiều cao bằng \(\frac{a\sqrt{3}}{2}\) và bán kính đường tròn đáy bằng \(\frac{a}{2}\) là
Tính đạo hàm của hàm số \(f\left( x \right)=\ln x\).
Trong không gian Oxyz, cho điểm \(M\left( -1;2;2 \right)\). Đường thẳng đi qua M và song song với trục Oy có phương trình là
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\). Số \(z+\overline{z}\) luôn là:
Cho một cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=\frac{1}{3}, {{u}_{8}}=26.\) Công sai của cấp số cộng đã cho là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian với hệ tọa độ Oxyz, Phương trình của mặt cầu có đường kính AB với \(A\left( 2;1;0 \right)\), \(B\left( 0;1;2 \right)\) là
Số nghiệm thực của phương trình \({{\log }_{3}}\left( {{x}^{2}}-3x+9 \right)=2\) bằng
Gọi m là giá trị nhỏ nhất và M là giá trị lớn nhất của hàm số \(f\left( x \right)=2{{x}^{3}}+3{{x}^{2}}-1\) trên đoạn \(\left[ -2;\,-\frac{1}{2} \right]\). Khi đó giá trị của M-m bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, \(SA\bot \left( ABCD \right)\). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng \(\left( ABCD \right)\) bằng độ dài đoạn thẳng nào?
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó ?
Trong không gian, điểm nào dưới đây thuộc mặt phẳng \(\left( \alpha \right):\,\,-x+y+2z-3=0\)?
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-2}{3}\)?