Một người xây nhà xưởng hình hộp chữ nhật có diện tích mặt sàn là \(1152{{\rm{m}}^{\rm{2}}}\) và chiều cao cố định. Người đó xây các bức tường xung quanh và bên trong để ngăn nhà xưởng thành ba phòng hình chữ nhật có kích thước như nhau (không kể trần nhà). Vậy cần phải xây các phòng theo kích thước nào để tiết kiệm chi phí nhất (bỏ qua độ dày các bức tường).
A. \(24{\rm{m}} \times 32{\rm{m}}\)
B. \(8{\rm{m}} \times 48{\rm{m}}\)
C. \(12{\rm{m}} \times 32{\rm{m}}\)
D. \(16{\rm{m}} \times 24{\rm{m}}\)
Lời giải của giáo viên
Đặt \(x,\text{ }y,\text{ }h\) lần lượt là chiều dài, chiều rộng và chiều cao mỗi phòng.
Theo giả thiết, ta có \(x.3y=1152\Leftrightarrow y=\frac{384}{x}\).
Để tiết kiệm chi phí nhất khi diện tích toàn phần nhỏ nhất.
Ta có \({{S}_{\text{tp}}}=4xh+6yh+3xy=4xh+6.\frac{384}{x}h+1152=4h\left( x+\frac{576}{x} \right)+1152\).
Vì h không đổi nên \({{S}_{\text{tp}}}\) nhỏ nhất khi \(f\left( x \right)=x+\frac{576}{x}\) (với x>0) nhỏ nhất.
Áp dụng BĐT Côsi \(x+\frac{576}{x}\ge 2\sqrt{x.\frac{576}{x}}=48\).
Dấu ''='' xảy ra \(\Leftrightarrow x=\frac{576}{x}\Leftrightarrow x=24\Rightarrow y=16\).
CÂU HỎI CÙNG CHỦ ĐỀ
Nếu \(\int\limits_{0}^{2}{\left[ 2f\left( x \right)+x \right]dx=5}\) thì \(\int\limits_{0}^{2}{f\left( x \right)dx}\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
Hàm số f(x) có bao nhiêu điềm cực trị?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) liên tục trên tập số thực \(\mathbb{R}\) và có đồ thị như hình vẽ.
Biết \(f\left( -1 \right)=\frac{13}{4},\,f\left( 2 \right)=6\). Giá trị nhỏ nhất của hàm số \(g\left( x \right)={{f}^{3}}\left( x \right)-3f\left( x \right)\) trên \(\left[ -1;2 \right]\) bằng
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 5 số nguyên x thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0?\)
Cho khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \({B}'B=a\), đáy ABC là tam giác vuông cân tại B và \(AC=a\sqrt{3}\). Góc giữa \({C}'A\) và mp \(\left( ABC \right)\) bằng
Nếu \(\int_{-1}^{2}{f}\left( x \right)\text{d}x=2\) và \(\int_{2}^{5}{f}\left( x \right)\text{d}x=-3\) thì \(\int_{-1}^{5}{f}\left( x \right)\text{d}x\) bằng
Trong không gian Oxyz, cho hai điểm \(A\left( 0;1;-2 \right)\) và \(B\left( 6;1;0 \right).\) Trung điểm của đoạn thẳng AB có tọa độ là
Tính môđun của số phức z thỏa mãn \(\left( 1+i \right).z.\left| z \right|-1=\left( i-2 \right)\left| z \right|\) và \(\left| z \right|\) là một số nguyên
Cho hàm số \(f\left( x \right)=\cos 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Đồ thị của hàm số \(y={{x}^{3}}-3x+2\) cắt trục hoành tại điểm có hoành độ bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} 4x - \sqrt {4x + 9} \,\,\,{\rm{khi}}\,\,x > 0\\ 4a + {\tan ^2}\,x\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \le 0 \end{array} \right.\), đồng thời \(I = \int\limits_{ - \frac{\pi }{4}}^4 {f\left( x \right)dx} = \frac{{50}}{3}\). Tính a.
Một hình trụ có bán kính đáy \(r=8\,cm\) và độ dài đường sinh \(l=5\,cm.\) Diện tích xung quanh của hình trụ đó bằng