Lời giải của giáo viên
\(\int\limits_0^2 {\left[ {2f\left( x \right) + x} \right]dx = 5} \Leftrightarrow 2\int\limits_0^2 {f\left( x \right)dx + \int\limits_0^2 x dx = 5} \Leftrightarrow 2\int\limits_0^2 {f\left( x \right)dx + \frac{{{x^2}}}{2}\left| \begin{array}{l} 2\\ 0 \end{array} \right. = 5} \Rightarrow \int\limits_0^2 {f\left( x \right)dx = \frac{3}{2}} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
Hàm số f(x) có bao nhiêu điềm cực trị?
Nếu \(\int_{-1}^{2}{f}\left( x \right)\text{d}x=2\) và \(\int_{2}^{5}{f}\left( x \right)\text{d}x=-3\) thì \(\int_{-1}^{5}{f}\left( x \right)\text{d}x\) bằng
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) liên tục trên tập số thực \(\mathbb{R}\) và có đồ thị như hình vẽ.
Biết \(f\left( -1 \right)=\frac{13}{4},\,f\left( 2 \right)=6\). Giá trị nhỏ nhất của hàm số \(g\left( x \right)={{f}^{3}}\left( x \right)-3f\left( x \right)\) trên \(\left[ -1;2 \right]\) bằng
Một hình trụ có bán kính đáy \(r=8\,cm\) và độ dài đường sinh \(l=5\,cm.\) Diện tích xung quanh của hình trụ đó bằng
Đồ thị của hàm số \(y={{x}^{3}}-3x+2\) cắt trục hoành tại điểm có hoành độ bằng
Trong không gian Oxyz, cho hai điểm \(A\left( 0;1;-2 \right)\) và \(B\left( 6;1;0 \right).\) Trung điểm của đoạn thẳng AB có tọa độ là
Tính môđun của số phức z thỏa mãn \(\left( 1+i \right).z.\left| z \right|-1=\left( i-2 \right)\left| z \right|\) và \(\left| z \right|\) là một số nguyên
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} 4x - \sqrt {4x + 9} \,\,\,{\rm{khi}}\,\,x > 0\\ 4a + {\tan ^2}\,x\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \le 0 \end{array} \right.\), đồng thời \(I = \int\limits_{ - \frac{\pi }{4}}^4 {f\left( x \right)dx} = \frac{{50}}{3}\). Tính a.
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -3;1 \right]\) và có đồ thị như hình vẽ dưới. Biết diện tích các hình A,B,C lần lượt là 27, 2 và 3. Tính tích phân \(I=\int\limits_{0}^{2}{\left( {{x}^{3}}+x \right)}{f}'\left( {{x}^{2}}-3 \right)\text{d}x\).
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=2\) và \({{u}_{5}}=18\). Giá trị của \({{u}_{3}}\) bằng
Trong không gian Oxyz, mặt cầu \(\left( S \right):{{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=16\) có bán kính bằng