Câu hỏi Đáp án 2 năm trước 22

Một sợi dây thép cho chiều dài \(8m,\) được chia thành 2 phần. Phần thứ nhất được uốn thành hình vuông, phần thứ hai được uốn thành hình tam giác đều. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu để diện tích hai hình thu được là nhỏ nhất? 

A. \(\frac{{24}}{{9 + 2\sqrt 3 }}m.\) 

B. \(\frac{{12}}{{9 + 2\sqrt 3 }}m.\)     

C. \(\frac{{12}}{{9 + 4\sqrt 3 }}m.\) 

D. \(\frac{{24}}{{9 + 4\sqrt 3 }}m.\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Gọi chiều dài phần thứ nhất dùng để uốn thành hình vuông là \(8 - x\,\,\left( m \right)\) thì chiều dài phần thứ hai dùng để uốn thành tam giác đều là \(x\,\,\left( m \right)\;\;\left( {0 < x < 8} \right).\)

Khi đó ta có cạnh của hình vuông là \(\frac{{8 - x}}{4}\,\,\left( m \right) \Rightarrow \) Diện tích hình vuông là \({S_1} = \frac{{{{\left( {8 - x} \right)}^2}}}{{16}}\,\,\left( {{m^2}} \right)\).

Cạnh của tam giác đều là \(\frac{x}{3}\,\,\left( m \right) \Rightarrow \) Diện tích tam giác đều là  \({S_2} = {\left( {\frac{x}{3}} \right)^2}\frac{{\sqrt 3 }}{4}\,\,\left( {{m^2}} \right)\).

Tổng diện tích hai hình thu được là

\(S = {S_1} + {S_2} = \frac{{{{\left( {8 - x} \right)}^2}}}{{16}}\, + {\left( {\frac{x}{3}} \right)^2}\frac{{\sqrt 3 }}{4} = \frac{{{{\left( {8 - x} \right)}^2}}}{{16}} + \frac{{{x^2}\sqrt 3 }}{{36}} = \frac{{9{{\left( {8 - x} \right)}^2} + 4\sqrt 3 {x^2}}}{{144}} = \frac{{\left( {9 + 4\sqrt 3 } \right){x^2} - 144x + 576}}{{144}}\)

Ta có \({S_{\min }} \Leftrightarrow {\left[ {\left( {9 + 4\sqrt 3 } \right){x^2} - 144x + 576} \right]_{\min }} \Leftrightarrow x = \frac{{ - b}}{{2a}} = \frac{{144}}{{2\left( {9 + 4\sqrt 3 } \right)}} = \frac{{72}}{{9 + 4\sqrt 3 }}\).

Vậy cạnh của tam giác đều là \(\frac{x}{3} = \frac{{24}}{{9 + 4\sqrt 3 }}\) (m).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) , cạnh \(SA\) vuông góc với mặt phẳng đáy, \(SB = a\sqrt 3 .\) Tính góc giữa \(SC\) và mặt phẳng đáy. 

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Chị Hân hàng tháng gửi vào ngân hàng \(1.500.000\) đồng, với lãi suất \(0,8\% \) một tháng. Sau 1 năm chị Hân rút cả vốn lẫn lãi về mua vàng thì số chỉ vàng mua được ít nhất là bao nhiêu? Biết giá vàng tại thời điểm mua là \(3.648.000\) đồng/chỉ.

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Hàm số \(y = f\left( x \right) =  - \frac{{{x^4}}}{4} + 2{x^2} + 6\) có bao nhiêu điểm cực đại? 

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên \(\left[ { - 4;\,4} \right]\) là

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Tìm hệ số của \({x^4}\) trong khai triển \({\left( {1 + x + 4{x^2}} \right)^{10}}\) thành đa thức. 

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Cho hàm số \(y = \frac{3}{{2 - x}}\). Chọn phát biểu đúng? 

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = {x^3} - 5{x^2} + 2\) có đồ thị \(\left( C \right)\) . Có bao nhiêu tiếp tuyến của \(\left( C \right)\) đi qua điểm \(A\left( {0;2} \right)?\) 

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Cho hình chóp \(SABC\) có đáy \(ABC\) là tam giác đều cạnh \(a.\) Biết \(SA \bot \left( {ABC} \right)\) và \(SA = 2a.\) Mặt phẳng \(\left( P \right)\) qua \(B\) vuông góc với \(SC.\) Diện tích thiết diện của hình chóp cắt bởi mặt phẳng \(\left( P \right)\) là:

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,BC = 2a,\,AC' = 3a.\) Điểm \({\rm N}\) thuộc cạnh \(BB'\) sao cho \(BN = 2NB',\) điểm \(M\) thuộc cạnh \(DD'\) sao cho \(D'M = 2MD.\) Mặt phẳng \(\left( {A'M{\rm N}} \right)\) chia hình hộp chữ nhật làm hai phần, tính thể tích phần chứa điểm \(C'.\)

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Trong các mệnh đề sau mệnh đề nào sai?

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Với giá trị nào của tham số \(m\) để đồ thị hàm số có hai điểm cực trị \(A,\;B\) sao cho \(AB = \sqrt {20} ?\)

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Cho \({\log _2}5 = a\) và \({\log _3}5 = b.\) Khi đó, \({\log _6}5\) tính theo \(a\) và \(b\) là: 

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hình chóp tứ giác đều \(S.ABCD,\) cạnh đáy có độ dài \(r\sqrt 2 ,\) chiều cao \(h\) . Xét hình nón \(\left( {\rm N} \right)\) ngoại tiếp khối chóp. Gọi \({V_1},\,{V_2}\) lần lượt là thể tích hình nón \(\left( {\rm N} \right)\) và thể tích khối cầu nội tiếp \(\left( {\rm N} \right)\) . Tìm tỉ số \(\frac{h}{r}\) sao cho \(\frac{{{V_1}}}{{{V_2}}}\) đạt giá trị nhỏ nhất?

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Phương trình \({\sin ^2}x - \left( {2 + m} \right)\,\sin x + 2m = 0\) có nghiệm khi tham số \(m\) thỏa mãn điều kiện 

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Cho hình nón có diện tích xung quanh bằng \(3\pi {a^2}\) và bán kính đáy bằng \(a.\) Tính tan của góc giữa một đường sinh và mặt đáy của nón. 

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »