Một trang trại mỗi ngày thu hoạch được một tấn rau. Mỗi ngày, nếu bán rau với giá \(30000\) đồng/kg thì hết sạch rau, nếu giá bán cứ tăng thêm \(1000\) đồng/kg thì số rau thừa lại tăng thêm \(20kg\). Số rau thừa này được thu mua làm thức ăn chăn nuôi với giá \(2000\) đồng/kg. Hỏi số tiền bán rau nhiều nhất mà trang trại có thể thu được mỗi ngày là bao nhiêu?
A. \(32\,420\,000\) đồng
B. \(32\,400\,000\) đồng
C. \(34\,400\,000\) đồng
D. \(34\,240\,000\) đồng
Lời giải của giáo viên
Gọi \(x\left( {x \ge 0} \right)\) (nghìn đồng) là số tiền tăng lên cho mỗi \(kg\) rau.
Số tiền bán mỗi một \(kg\) rau sau khi tăng là \(x + 30\) (nghìn đồng).
Số \(kg\) rau thừa là \(20x\) \(\left( {x \le 50} \right)\).
Tổng số \(kg\) rau bán được là \(1000 - 20x\) \(\left( {kg} \right)\).
Tổng số tiền thu được là \(T = \left( {1000 - 20x} \right)\left( {30 + x} \right) + 20x.2 = - 20{x^2} + 440x + 30000\).
Mà \( - 20{x^2} + 440x + 30000 = 32420 - 20{\left( {x - 11} \right)^2} \le 32420\).
Do đó \(T \le 32420 \Rightarrow \max T = 32420\), dấu \('' = ''\) xảy ra khi \(x = 11\).
Vậy số tiền nhiều nhất bán được là \(32\,420\,000\) đồng.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\).
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.
Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Phương trình \(2f\left( x \right) - 5 = 0\) có bao nhiêu nghiệm âm?
Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) = - 1\) là
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Hình chóp tam giác đều \(S.ABC\) có cạnh đáy là \(a\) và mặt bên tạo với đáy góc \({45^0}\). Tính theo \(a\) thể tích khối chóp \(S.ABC\).
Cho hình lập phương \(ABCD.A'B'C'D'.\) Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh \(A,B,D,\,A'\,,B'\,,D'\,?\)
Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:
Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ bên. Bất phương trình \(f\left( {{e^x}} \right) < m\left( {3{e^x} + 2019} \right)\) có nghiệm \(x \in \left( {0;1} \right)\) khi và chỉ khi
Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là
Cho khối lập phương \(ABCD.A'B'C'D'.\) Cắt khối lập phương trên bởi các mặt phẳng \(\left( {AB'D'} \right)\) và \(\left( {C'BD} \right)\) ta được ba khối đa diện. Xét các mệnh đề sau :
(I) : Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II) : Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều.
(III) : Trong ba khối đa diện thu được có hai khối đa diện bằng nhau.Số mệnh đề đúng là :
Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(\sqrt 3 .\) Mặt phẳng \(\left( \alpha \right)\) cắt tất cả các cạnh bên của hình lập phương. Tính diện tích thiết diện của hình lập phương cắt bởi mặt phẳng \(\left( \alpha \right)\) biết \(\left( \alpha \right)\) tạo với mặt \(\left( {ABB'A'} \right)\) một góc \(60^\circ .\)
Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Gọi \(M,N\) lần lượt là trung điểm của \(BC\) và \(A'B'\). Mặt phẳng \(\left( {MND'} \right)\) chia khối lập phương thành hai khối đa diện, trong đó khối chứa điểm \(C\) gọi là \(\left( H \right)\). Tính thể tích khối \(\left( H \right)\).