Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp đều S.ABCD có tam giác SAC đều cạnh a. Thể tích của khối chóp S.ABCD là
Trong không gian tọa độ Oxyz, cho \(A\left( {2;0;1} \right),B\left( {0;5; - 1} \right).\) Tích vô hướng của hai véc tơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) bằng
Cho hình nón có góc ở đỉnh bằng 800. Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng
Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm \(I(2;-3;-4)\) bán kính 4 là
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng?
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình bên. Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 1}}\) là
Một người gửi tiết kiệm 300 triệu với lãi suất 5% một năm và lãi hàng năm được nhập vào vốn. Sau ít nhất bao nhiêu năm người đó nhận được số tiền lớn hơn 450 triệu?
Cho hàm số \(y=cos 4x\) có một nguyên hàm là \(F(x)\). Khẳng định nào sau đây là đúng?
Số nghiệm âm của phương trình \(\log \left| {{x^2} - 3} \right| = 0\) là
Hàm số nào trong các hàm số sau đây có đồ thị phù hợp với hình bên?
Nền nhà tầng 1 của một hội trường có độ cao 0,8 mét so với mặt đất. Từ nền nhà tầng 1 lên nền nhà tầng 2 có 1 cầu thang 19 bậc, độ cao của các bậc (so với mặt đất) theo thứ tự lập thành một cấp số cộng \(\left( {2; + \infty } \right)\) có 19 số hạng, \({u_1} = 0,95;d = 0,15\) (đơn vị là m). Độ cao của bậc thứ 8 so với mặt đất là
Tất cả các học sinh của lớp 10A1 đều học giỏi ít nhất một trong hai môn Toán hoặc Tiếng Anh. Lớp có đúng 30 bạn giỏi Toán, 25 bạn giỏi Tiếng Anh, 16 bạn giỏi cả hai môn Toán và Tiếng Anh. Số học sinh của lớp 10A1 là
Xét các khẳng định sau:
i) Nếu \(a>2019\) thì \({a^x} > {2019^x}_{}^{}\forall x \in R\)
ii) Nếu \(a>2019\) thì \({b^a} > {b^{2019}},\forall b > 0\)
iii) Nếu \(a>2019\) thì \({\log _b}a > {\log _b}2019_{}^{}\forall b > 0,b \ne 1\)
Số khẳng định đúng trong các khẳng định trên là
Nếu các số hữu tỉ \(a,b\) thỏa mãn \(\int\limits_0^1 {\left( {a{e^x} + b} \right)} dx = 3e + 4\) thì giá trị của biểu thức \(a+b\) là