Ông A muốn làm mái vòm ở phía trước ngôi nhà của mình bằng vật liệu tôn. Mái vòm đó là một phần của mặt xung quanh của một hình trụ như hình bên dưới. Biết giá tiền của 1\({{m}^{2}}\) tôn là 320.000 đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông A mua tôn là bao nhiêu ?
A. 2.513.000 đồng
B. 5.804.000 đồng
C. 5.027.000 đồng
D. 2.902.000 đồng
Lời giải của giáo viên
Gọi r là bán kính đáy của hình trụ. Khi đó: \(\frac{5}{\sin {{120}^{0}}}=2r\Leftrightarrow r=\frac{5\sqrt{3}}{3}.\)
Sử dụng hệ thức lượng trong tam giác, ta có góc ở tâm của cung này bằng \({{120}^{0}}\).
Và độ dài cung này bằng \(\frac{1}{3}\) chu vi đường tròn đáy.
Suy ra diện tích của mái vòm bằng \(\frac{1}{3}{{S}_{xq}}\), (với \({{S}_{xq}}\) là diện tích xung quanh của hình trụ).
Do đó, giá tiền của mái vòm là
\(\frac{1}{3}{{S}_{xq}}.320.000=\frac{1}{3}.\left( 2\pi rl \right).320.000=\frac{1}{3}.\left( 2\pi .\frac{5\sqrt{3}}{3}.3 \right).320.000\simeq 5.804.157,966.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm như sau.
Khi đó số cực trị của hàm số \(y=f\left( x \right)\) là
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(y={f}'\left( x \right)\) ở hình vẽ bên. Xét hàm số \(g\left( x \right)=f\left( x \right)-\frac{1}{3}{{x}^{3}}-\frac{3}{4}{{x}^{2}}+\frac{3}{2}x+2021,\) mệnh đề nào dưới đây đúng?
Có bao nhiêu cách xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế?
Có bao nhiêu số phức z thỏa mãn \(\left| z+2-i \right|=2\sqrt{2}\) và \({{\left( z-i \right)}^{2}}\) là số thuần ảo
Cho số phức z thoả mãn \(3\left( \overline{z}-i \right)-\left( 2+3i \right)z=9-16i.\) Môđun của z bằng
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 36-{{x}^{2}} \right)\ge 3\) là
Tọa độ giao điểm của đồ thị của hàm số \(y = {x^4} - 3{x^2} - 2\) với trục tung là
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=2a, \(\widehat{BAC}={{60}^{0}}\) và \(SA=a\sqrt{2}\). Góc giữa đường thẳng SB và mặt phẳng \(\left( SAC \right)\) bằng
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right), C\left( 0;0;3 \right), B\left( 0;2;0 \right)\). Tập hợp các điểm M thỏa mãn \(M{{A}^{2}}=M{{B}^{2}}+M{{C}^{2}}\) là mặt cầu có bán kính là:
Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 4a. Thể tích của khối lăng trụ đã cho bằng
Trong không gian Oxyz, cho mặt cầu \((S):{{(x+1)}^{2}}+{{(y+2)}^{2}}+{{(z-3)}^{2}}=9\). Tâm của (S) có tọa độ là:
Cho hình chóp đều S.ABC có \(AB=a\sqrt{3}\), khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{3a}{4}\) . Thể tích của khối chóp S.ABC bằng
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có tất cả các cạnh bằng a. Gọi M là trung điểm của AA' (tham khảo hình vẽ).
Khoảng cách từ M đến mặt phẳng \(\left( A{B}'C \right)\) bằng
Cho tích phân \(\int\limits_{0}^{\frac{\pi }{2}}{\left( 4x-1+\cos x \right)\text{d}x}=\pi \left( \frac{\pi }{a}-\frac{1}{b} \right)+c\), \(\left( a,b,c\in \mathbb{Q} \right)\). Tính a-b+c
Nếu \(\int\limits_{0}^{3}{f(x)dx=5}\) và \(\int\limits_{7}^{3}{f(x)dx=2}\) thì \(\int\limits_{0}^{7}{f(x)dx}\) bằng