Lời giải của giáo viên
\(\begin{array}{l}{z^2} - 2z + 3 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} = - 2\\ \Rightarrow \left[ \begin{array}{l}z - 1 = i\sqrt 2 \\z - 1 = - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 1 + i\sqrt 2 \\z = 1 - i\sqrt 2 \end{array} \right.\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trên đồ thị (C) của hàm số \(y = {{x + 10} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Tính nguyên hàm \(\int {{{\left( {5x + 3} \right)}^3}\,dx} \) ta được:
Cho 3 điểm \(A(1;1;1),B(1; - 1;0),C(0; - 2;3)\). Tam giác \(ABC\) là
Diện tích hình phẳng giới hạn bởi các đường : \(y = {x^2}\,,\,y = \dfrac{{{x^2}}}{8},\,\,y = \dfrac{{27}}{x}\) là:
Đặt \(F(x) = \int\limits_1^x {t\,dt} \). Khi đó F’(x) là hàm số nào dưới đây ?
Cho số phức z thỏa mãn \(\left( {3 - 2i} \right)z = 4 + 2i\). Tìm số phức liên hợp của z.
Cho x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây sai ?
Khối chóp tứ giác đều có thể tích \(V = 2{{\rm{a}}^3}\), cạnh đáy bằng \(a\sqrt 6 \) thì chiều cao khối chóp bằng:
Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là
Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng
Cho hàm số \(y = {2^x} - 2x\). Khẳng định nào sau đây sai :
Nếu \({\log _a}x = {1 \over 2}{\log _a}9 - {\log _a}5 + {\log _a}2\,\,\,\,(a > 0,\,a \ne 1)\) thì x bằng:
Một hình trụ có bán kính đáy r = 5 cm và khoảng cách giữa hai đáy bằng 7cm. Khi đó diện tích xung quanh của hình trụ là: