Lời giải của giáo viên
\(y' = 4{x^3} - 4x\)
\(y' = 0 \Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 0\\ x = 1 \end{array} \right.\)
Bảng biến thiên
Dựa vào bảng biến thiên suy ra đồ thị hàm số \(y={{x}^{4}}-2{{x}^{2}}+2\) giao với y=0 (trục hoành) là 0 giao điểm.
CÂU HỎI CÙNG CHỦ ĐỀ
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số sau:
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Một viên gạch hoa hình vuông cạnh 40 cm được thiết kế như hình bên dưới. Diện tích mỗi cánh hoa (phần tô đậm) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y={f}'\left( x \right)\) cho bởi hình vẽ bên. Đặt \(g\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}, \forall x\in \mathbb{R}\). Hỏi đồ thị hàm số \(y=g\left( x \right)\) có bao nhiêu điểm cực trị
Cho khối trụ có chiều cao bằng 4a và bán kính đáy bằng 2a. Thể tích khối trụ đã cho bằng
Cho số phức z thỏa mãn \(\left( 1+2i \right)z=5{{\left( 1+i \right)}^{2}}\). Tổng bình phương phần thực và phần ảo của số phức \(w=\bar{z}+iz\) bằng:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên đoạn \(\left[ -4;\,0 \right]\) lần lượt là M và n. Giá trị của tổng M+n bằng
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( 1;-4;0 \right),B\left( 3;0;0 \right)\). Viết phương trình đường trung trực \(\left( \Delta \right)\) của đoạn AB biết \(\left( \Delta \right)\) nằm trong mặt phẳng \(\left( \alpha \right):x+y+z=0\)
Hàm số nào dưới đây đồng biến trên \(\mathbb{R}\)?
Cho hình chóp S.ABC có tam giác ABC vuông tại A, AB=a, AC=2a. SA vuông góc với mặt phẳng đáy \(\left( ABC \right)\) và \(SA=a\sqrt{3}\). Tính thể tích V của khối chóp S.ABC.
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=9\). Tìm tọa độ tâm của mặt cầu \(\left( S \right).\)
Trong không gian Oxyz, đường thẳng d: \(\left\{ \begin{array}{l} x = 2 + 3t\\ y = - 1 - 4t\\ z = 5t \end{array} \right.\) đi qua điểm nào sau đây?
Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( m;0;0 \right), B\left( 0;m-1;0 \right); C\left( 0;0;m+4 \right)\) thỏa mãn BC=AD, CA=BD và AB=CD. Giá trị nhỏ nhất của bán kính mặt cầu ngoai tiếp tứ diện ABCD bằng