Lời giải của giáo viên
Tặng năm quyển sách khác nhau cho ba học sinh sao cho mỗi học sinh nhận ít nhất một quyển sách ta có các trường hợp sau:
+) Trường hợp 1: Một người nhận 3 quyển sách; hai người còn lại mỗi người nhận 1 quyển sách.
Số cách tặng: \(C_5^3 \cdot C_2^1 \cdot C_1^1 \cdot 3 = 60\).
+) Trường hợp 2: Một người nhận 1 quyển sách; 2 người còn lại mỗi người nhận quyển sách.
Số cách tặng: \(C_5^1 \cdot C_4^2 \cdot C_2^2 \cdot 3 = 90\).
Vậy số cách tặng quà thỏa mãn yêu cầu bài toán là 150.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi S là các tập hợp các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {{x^3} - 3mx + 8} \right|\) trên đoạn [0;3] bằng 8. Tổng các số nguyên m bằng
Gọi S là tập hợp các hoành độ giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) và đường thẳng y = 1. Tổng các phần tử của S là
Số giá trị nguyên của tham số m để hàm số \(y = \frac{{mx - 4}}{{x - m}}\) đồng biến trên khoảng (0;2) là
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAB là tam giác vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h giữa hai đường thẳng SB và AC.
Cho hàm số y = f(x) xác định, liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình \(2f\left( {3 - 4\sqrt {6x - 9{x^2}} } \right) = m - 3\) có nghiệm?
Cho x và y là những số thực không âm thỏa mãn \({x^2} + 2x + \frac{{{y^2}}}{2} - 3 = {\log _2}\frac{{\sqrt {9 - {y^2}} }}{{x + 1}}\).
Giá trị lớn nhất của biểu thức T = x + y thuộc tập nào dưới đây ?
Cho hàm số y = f(x) có bảng biến thiên dưới đây.
Giá trị cực đại của hàm số đã cho bằng bao nhiêu?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + z = 0\) và đường thẳng \(d:\frac{{x + 1}}{4} = \frac{{y + 1}}{3} = \frac{{z - 2}}{{ - 1}}\). Tọa độ giao điểm của (P) và d là điểm nào dưới đây?
Cho hình chóp S.ABC biết \(SA \bot \left( {ABC} \right)\), SA = a. Tam giác ABC là tam giác đều cạnh bằng a. M là trung điểm của BC. Khoảng cách giữa hai đường thẳng SM và AB bằng
Cho số nguyên a, số thực b. Gọi S là tập hợp các giá trị nguyên của a để tồn tại số thực x thỏa mãn \(x + a = {4^b}\) và \(\sqrt {x - 2} + \sqrt {a + 2} = {3^b}\). Tổng các phần tử của tập S là
Tổng tất cả các giá trị của tham số m để phương trình \({25^x} - \left( {m + 1} \right){.5^x} + m = 0\) có hai nghiệm thực phân biệt x1, x2 thỏa mãn \(x_1^2 + x_2^2 = 4\) bằng:
Trong không gian cho tam giác ABC đều cạnh 2a, gọi H là trung điểm của cạnh BC. Khi quay tam giác ABC xung quanh cạnh AH ta được một hình nón có diện tích toàn phần bằng
Trong không gian Oxyz, mặt cầu (S) có tâm I(-1;4;2) và có bán kính R = 5 có phương trình là:
Cho lăng trụ tam giác ABC.A'B'C'. Biết vuông góc với đáy. Góc A'A tạo với đáy một góc bằng 60o. Góc giữa hai mặt phẳng (ABB'A') và (ACC'A') bằng 30o. Khoảng cách từ A đến BB' và CC' lần lượt bằng 8 và 9 . Gọi H, K lần lượt là hình chiếu vuông góc của A trên BB', CC' và H', K' lần lượt là hình chiếu vuông góc của A' trên BB', CC'.
Thể tích lăng trụ AHK.A'H'K' bằng
Cho hàm số \(f(x) = {2^x}{.5^{{x^2}}}.\) Mệnh đề nào sau đây đúng?