Lời giải của giáo viên
\(\int\limits_1^4 {\sqrt x dx} = \frac{1}{{2\sqrt x }}\left| \begin{array}{l} 4\\ 1 \end{array} \right. = \frac{1}{4} - \frac{1}{2} = - \frac{1}{4}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz cho hai điểm \(A\left( 1;0;0 \right),B\left( 3;4;-4 \right)\). Xét khối trụ \(\left( T \right)\) có trục là đường thẳng AB và có hai đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( T \right)\) có thể tích lớn nhất, hai đáy của \(\left( T \right)\) nằm trên hai mặt phẳng song song lần lượt có phương trình là \(x+by+cz+{{d}_{1}}=0\) và \(x+by+cz+{{d}_{2}}=0\). Khi đó giá trị của biểu thức \(b+c+{{d}_{1}}+{{d}_{2}}\) thuộc khoảng nào sau đây?
Cho hàm số \(f\left( x \right)\), đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=2f\left( x \right)-{{\left( x+1 \right)}^{2}}\) trên đoạn \(\left[ -3;3 \right]\) bằng
Có bao nhiêu số phức z thỏa mãn \(\left| z \right|=\sqrt{13}\) và \(\left( z-2i \right)\left( \overline{z}-4i \right)\) là số thuần ảo?
Có bao nhiêu số nguyên \(m\in \left( -20;20 \right)\) để phương trình \({{7}^{x}}+m=6{{\log }_{7}}\left( 6x-m \right)\) có nghiệm thực
Cho hàm số bậc bốn trùng phương \(y=f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại ba điểm \({{x}_{1}},{{x}_{2}},\,{{x}_{3}}\,\,({{x}_{1}}<{{x}_{2}}<{{x}_{3}})\) thỏa mãn \({{x}_{1}}+{{x}_{3}}=4\). Gọi \({{S}_{1}}\) và \({{S}_{2}}\) là diện tích của hai hình phẳng được gạch trong hình. Tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\) bằng
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=a, \(BC=a\sqrt{3}\). Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc \({{30}^{{}^\circ }}\). Thể tích khối chóp S.ABCD bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} 2x - 2{\rm{ }}\,\,{\rm{ }}\,\,khi{\rm{ }}x \le 0\\ {x^2}{\rm{ + 4}}x - 2\,\,\,\,{\rm{ }}khi{\rm{ }}x > 0 \end{array} \right.\). Tích phân \(I = \int\limits_0^\pi {\sin 2x.f\left( {{\rm{cos}}x} \right){\rm{d}}x} \) bằng
Cho hình lăng trụ đứng ABC.A'B'C' có độ dài cạnh bên bằng 3, đáy ABC là tam giác vuông tại B và AB=2 (tham khảo hình bên). Khoảng cách từ A đến mặt phẳng \(\left( A'BC \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) là một hàm đa thức có bảng xét dấu \({f}'\left( x \right)\) như sau
Số điểm cực trị của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-\left| x \right| \right)\)
Tập nghiệm của bất phương trình \({{2}^{{{x}^{2}}+2x}}\le 8\) là
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của đường thẳng đi qua \(A\left( 1;0;2 \right)\) và vuông góc với mặt phẳng \(\left( P \right):x-y+3z-7=0?\)
Cho số phức z=-2+3i. Điểm biểu diễn của \(\overline{z}\) trên mặt phẳng tọa độ là
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y=\frac{1-4x}{2x-1}\).
Đồ thị của hàm số \(y=-{{x}^{4}}-3{{x}^{2}}+1\) cắt trục tung tại điểm có tung độ bằng