Lời giải của giáo viên
\(y' = {\left( {\dfrac{{2x + 1}}{{x - 1}}} \right)^\prime } \)
\(= \dfrac{{2(x - 1) - (2x + 1)}}{{{{(x - 1)}^2}}} = \dfrac{{ - 3}}{{{{(x - 1)}^2}}}\)
\(y'(2) = \dfrac{{ - 3}}{{{{\left( {2 - 1} \right)}^2}}} = - 3\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ -1;1 \right]\) và \(\int\limits_{-1}^{1}{f\left( x \right)dx}=4\). Kết quả \(I=\int\limits_{-1}^{1}{\frac{f\left( x \right)}{1+{{e}^{x}}}dx}\) bằng:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:
Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh \({{S}_{xq}}\) của hình nón là:
Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( 10;1 \right),B\left( 3;-2;0 \right),C\left( 1;2;-2 \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến \(\left( P \right)\) lớn nhất biết rằng \(\left( P \right)\) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là:
Tính \(\lim \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
Chọn ngẫu nhiên một số tự nhiên gồm 7 chữ số khác nhau có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \). Tính xác suất để số được chọn luôn có mặt chữ số 2 và thỏa mãn \({a_1} < {a_2} < {a_3} < {a_4} > {a_5} > {a_6} > {a_7}\).
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}\). Tọa độ của vectơ \(\overrightarrow{a}\) là: