Tìm giá trị thực của tham số \(m\)để đường thẳng \(d:y = x - m + 2\) cắt đồ thị hàm số \(y = \dfrac{{2x}}{{x - 1}}\)\(\left( C \right)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho độ dài \(AB\) ngắn nhất.
A. \(m = - 3\)
B. \(m = 3\)
C. \(m = - 1\)
D. \(m = 1\)
Lời giải của giáo viên
Xét phương trình hoành độ giao điểm: \(x - m + 2 = \dfrac{{2x}}{{x - 1}}\,\,\left( {x \ne 1} \right)\).
\( \Leftrightarrow {x^2} - x + \left( { - m + 2} \right)x + m - 2 = 2x \Leftrightarrow g\left( x \right) = {x^2} - \left( {m + 1} \right)x + m - 2 = 0\,\,\left( * \right)\)
Để đường thẳng \(\left( d \right)\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \( \Leftrightarrow pt\left( * \right)\) có 2 nghiệm phân biệt khác 1.
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - 4\left( {m - 2} \right) > 0\\1 - \left( {m + 1} \right) + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 9 > 0\\1 - m - 1 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 3} \right)^2} > 0\\ - 2 \ne 0\;\;\forall m \in \mathbb{R}\end{array} \right. \Leftrightarrow m \ne 3.\)
Gọi \({x_A},\,\,{x_B}\) là 2 nghiệm phân biệt của (*), áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_A} + {x_B} = m + 1\\{x_A}{x_B} = m - 2\end{array} \right.\).
Ta có:
\(\begin{array}{l}A{B^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{y_B} - {y_A}} \right)^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{x_B} - m + 2 - {x_A} + m - 2} \right)^2}\\\,\,\,\,\,\,\,\,\,\, = 2{\left( {{x_B} - {x_A}} \right)^2} = 2\left[ {{{\left( {{x_A} + {x_B}} \right)}^2} - 4{x_A}{x_B}} \right] = 2\left[ {{{\left( {m + 1} \right)}^2} - 4\left( {m - 2} \right)} \right]\\\,\,\,\,\,\,\,\,\,\, = 2\left( {{m^2} + 2m + 1 - 4m + 8} \right) = 2\left( {{m^2} - 2m + 9} \right) = 2{\left( {m - 1} \right)^2} + 16 \ge 16\end{array}\)
Ta có: \(A{B^2} \ge 16 \Leftrightarrow AB \ge 4\). Dấu “=” xảy ra \( \Leftrightarrow m = 1\;\;\left( {tm} \right)\).
Vậy \(m = 1\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là:
Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là:
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là:
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\).
Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 10t + 20\)(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét ?
Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\).
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A.
Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.
Cho số phức z có \(\left| z \right| = 1\). Tìm giá trị lớn nhất của biểu thức \(P = \left| {{z^2} - z} \right| + \left| {{z^2} + z + 1} \right|\) .
Một vật N1 có dạng hình nón có chiều cao bằng 40cm. Người ta cắt vật N1 bằng một mặt cắt song song với mặt đáy của nó để được một hình nón nhỏ N2 có thể tích bằng \(\dfrac{1}{8}\) thể tích N1.Tính chiều cao h của hình nón N2?
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\) . Tính số đo góc giữa đường thẳng d và mặt phẳng (P).