Tìm khẳng định sai
A. \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} - \int\limits_b^c {f\left( x \right)dx} \)
B. \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \)
C. \(\int\limits_a^a {f\left( x \right)dx} = 1\)
D. \(\int\limits_a^b {\left( {f\left( x \right) + g\left( x \right)} \right)} \,dx = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \)
Lời giải của giáo viên
Ta có \(\int\limits_a^a {f\left( x \right)dx} = 0\) nên khẳng định sai là \(\int\limits_a^a {f\left( x \right)dx} = 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để phương trình \({4^x} - 2\left( {m - 1} \right){.2^x} + 3m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + {x_2} > 2\).
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):2x-y+z+2=0\) và \(\left( Q \right):x+y+2z-1=0\). Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Trong không gianOxyz, tìm m để góc giữa hai véc-tơ \(\overrightarrow{u}=\left( 1;{{\log }_{3}}5;{{\log }_{m}}2 \right)\) và \(\overrightarrow{v}=\left( 3;{{\log }_{5}}3;4 \right)\) là góc nhọn.
Trong không gian Oxyz, cho ba điểm \(A\left( 1;1;1 \right),B\left( -1;2;0 \right),C\left( 3;-1;2 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng \(\Delta :\frac{x-1}{2}=\frac{y}{1}=\frac{z+1}{-1}\) sao cho biểu thức \(P=2M{{A}^{2}}+3M{{B}^{2}}-4M{{C}^{2}}\) đạt giá trị nhỏ nhất. Tính a+b+c.
Cho \(A=\int\limits_{1}^{2}{\left[ 3f\left( x \right)+2g\left( x \right) \right]}\,dx=1\) và \(B=\int\limits_{1}^{2}{\left[ 2f\left( x \right)-g\left( x \right) \right]}\,dx=3\). Khi đó \(\int\limits_{1}^{2}{f\left( x \right)}\,dx\) có giá trị là
Tìm giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4\sin x} \).
Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( {1;6;2} \right),B\left( {5;1;3} \right),C\left( {4;0;6} \right),D\left( {5;0;4} \right)\). Viết phương trình mặt cầu (S) có tâm D và tiếp xúc với mặt phẳng (ABC).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mệnh đề nào sau đây sai?
Cho khối chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, góc giữa \(\left( SBC \right)\) và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABC.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x-2y+3=0. Viết phương trình d' là ảnh của đường thẳng d qua phép tịnh tiến theo véc-tơ \(\overrightarrow{v}=(3\,;1)\).
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):nx+7y-6z+4=0\) và \(\left( Q \right):3x-my-2z-7=0\) song song với nhau. Tính giá trị của \(m,\,n\).
Một hình nón \(\left( N \right)\) có thiết diện qua trục là tam giác đều có cạnh bằng 2. Thể tích V của khối nón giới hạn bởi \(\left( N \right)\) bằng
Tìm giá trị lớn nhất của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2018\) đồng biến trên R.
Tính giá trị cực tiểu của hàm số \(y = {x^3} - 3{x^2} + 1\)
Cho số phức \(z = \frac{{1 + i}}{{1 - i}}\) thì z2019 có giá trị là