Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}.\)
A. \(\int{\frac{2}{4x-3}\,\text{d}x}=2\ln \left( 2x-\frac{3}{2} \right)+C.\)
B. \(\int{\frac{2}{4x-3}\,\text{d}x}=\frac{1}{4}\ln \left| 4x-3 \right|+C.\)
C. \(\int{\frac{2}{4x-3}\,\text{d}x}=\frac{1}{2}\ln \left| 2x-\frac{3}{2} \right|+C.\)
D. \(\int{\frac{2}{4x-3}\,\text{d}x}=\frac{1}{2}\ln \left( 2x-\frac{3}{2} \right)+C.\)
Lời giải của giáo viên
Ta có \(\int{f\left( x \right)\,\text{d}x}=\int{\frac{2}{4x-3}\,\text{d}x}=\frac{2}{4}\ln \left| 4x-3 \right|+C=\frac{1}{2}\ln \left| 2\left( 2x-\frac{3}{2} \right) \right|+C=\frac{1}{2}\ln \left| 2x-\frac{3}{2} \right|+C.\)
Chọn C
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Cho đồ thị hàm số như hình vẽ. Mệnh đề nào dưới đây là đúng ?
Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng điểm số của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)=\dfrac{1}{2{{e}^{x}}+3}\) thỏa mãn \(F\left( 0 \right)=10.\) Tìm \(F\left( x \right).\)
Cho hàm số \(y=f\left( x \right),\) có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng ?
Tìm giá trị lớn nhất của hàm số sau \(y=\sqrt{x+1}+\sqrt{3-x}\)
Cho \(F\left( x \right)=\left( a{{x}^{2}}+bx-c \right){{e}^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)=\left( 2018{{x}^{2}}-3x+1 \right){{e}^{2x}}\) trên khoảng \(\left( -\,\infty ;+\,\infty \right).\) Tính tổng \(T=a+2b+4c.\)
Tìm tập xác định \(D\) của hàm số \(y={{\left( {{x}^{2}}-3x+2 \right)}^{-\,3}}.\)
Xét các số thực \(x,\,\,y\) với \(x\ge 0\) thỏa mãn điều kiện:\({{2018}^{x\,+\,3y}}+{{2018}^{xy\,+\,1}}+x+1={{2018}^{-\,xy\,-\,1}}+\frac{1}{{{2018}^{x\,+\,3y}}}-y\left( x+3 \right)\)Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T=x+2y.\) Mệnh đề nào sau đây đúng ?
Cho phương trình lượng giác \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5,\) với \(m\) là một phần tử của tập hợp \(E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}.\) Có bao nhiêu giá trị của \(m\) để phương trình đã cho có nghiệm ?
Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {{C}'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\,\times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\) Tính giá trị biểu thức \(\left| \vec{u}+\vec{v} \right|.\)
Tìm \(L=\lim \left( \dfrac{1}{1}+\dfrac{1}{1+2}+\,...\,+\dfrac{1}{1+2+\,...\,+n} \right).\)
Nếu \({{\log }_{2}}\left( {{\log }_{8}}x \right)={{\log }_{8}}\left( {{\log }_{2}}x \right)\) thì \({{\left( {{\log }_{2}}x \right)}^{2}}\) bằng
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( 1;-\,2;3 \right).\) Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( Oyz \right)\) là điểm \(M.\) Tọa độ của điểm \(M\) là