Xét các số thực \(x,\,\,y\) với \(x\ge 0\) thỏa mãn điều kiện:\({{2018}^{x\,+\,3y}}+{{2018}^{xy\,+\,1}}+x+1={{2018}^{-\,xy\,-\,1}}+\frac{1}{{{2018}^{x\,+\,3y}}}-y\left( x+3 \right)\)Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T=x+2y.\) Mệnh đề nào sau đây đúng ?
A. \(m\in \left( -\,1;0 \right).\)
B. \(m\in \left( 0;1 \right).\)
C. \(m\in \left( 2;3 \right).\)
D. \(m\in \left( 1;2 \right).\)
Lời giải của giáo viên
Giả thiết \(\Leftrightarrow \,\,{{2018}^{x\,+\,3y}}-\frac{1}{{{2018}^{x\,+\,3y}}}+x+3y={{2018}^{-\,xy\,-\,1}}-\frac{1}{{{2018}^{-\,xy\,-\,1}}}-xy-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right).\)
Xét hàm số \(f\left( t \right)={{2018}^{t}}-{{2018}^{-\,t}}+t\) trên R, có \({f}'\left( t \right)={{2018}^{t}}.\ln 2018+{{2018}^{-\,t}}.\ln 2018+1>0\)
Suy ra \(f\left( t \right)\) là hàm số đồng biến trên R mà \(\left( * \right)\Leftrightarrow f\left( x+3y \right)=f\left( -xy-1 \right)\Leftrightarrow x+3y=-\,xy-1.\)
\(\Leftrightarrow x+1=-\,\left( x+3 \right)y\Leftrightarrow y=-\frac{x+1}{x+3}.\) Khi đó \(T=x+2y=x-\frac{2x+2}{x+3}=\frac{{{x}^{2}}+x-2}{x+3}.\)
Xét hàm số \(g\left( x \right)=\frac{{{x}^{2}}+x-2}{x+3}\) trên khoảng \(\left[ 0;+\,\infty \right),\) có \({g}'\left( x \right)=\frac{{{x}^{2}}+6x+5}{{{\left( x+3 \right)}^{2}}}>0;\,\,\forall x\ge 0.\)
Do đó, \(g\left( x \right)\) là hàm số đồng biến trên \(\left[ 0;+\,\infty \right)\,\,\xrightarrow{{}}\,\,\underset{\left( 0;+\,\infty \right)}{\mathop{\min }}\,g\left( x \right)=g\left( 0 \right)=-\,\frac{2}{3}\in \left( -\,1;0 \right).\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Cho đồ thị hàm số như hình vẽ. Mệnh đề nào dưới đây là đúng ?
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)=\dfrac{1}{2{{e}^{x}}+3}\) thỏa mãn \(F\left( 0 \right)=10.\) Tìm \(F\left( x \right).\)
Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng điểm số của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?
Cho hàm số \(y=f\left( x \right),\) có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng ?
Tìm nguyên hàm của hàm số \(f\left( x \right)=\frac{2}{4x-3}.\)
Cho \(F\left( x \right)=\left( a{{x}^{2}}+bx-c \right){{e}^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)=\left( 2018{{x}^{2}}-3x+1 \right){{e}^{2x}}\) trên khoảng \(\left( -\,\infty ;+\,\infty \right).\) Tính tổng \(T=a+2b+4c.\)
Tìm giá trị lớn nhất của hàm số sau \(y=\sqrt{x+1}+\sqrt{3-x}\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( 1;-\,2;3 \right).\) Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( Oyz \right)\) là điểm \(M.\) Tọa độ của điểm \(M\) là
Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {{C}'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\,\times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)
Tìm tập xác định \(D\) của hàm số \(y={{\left( {{x}^{2}}-3x+2 \right)}^{-\,3}}.\)
Cho phương trình lượng giác \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5,\) với \(m\) là một phần tử của tập hợp \(E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}.\) Có bao nhiêu giá trị của \(m\) để phương trình đã cho có nghiệm ?
Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\) Tính giá trị biểu thức \(\left| \vec{u}+\vec{v} \right|.\)
Cho hàm số \(y=\frac{2x}{x+2},\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x}_{0}};{{y}_{0}} \right)\in \left( C \right),\) với \({{x}_{0}}\ne 0.\) Biết khoảng cách từ điểm \(I\left( -\,2;2 \right)\) đến tiếp tuyến của \(\left( C \right)\) tại \(M\) là lớn nhất, mệnh đề nào sau đây đúng?
Tìm \(L=\lim \left( \dfrac{1}{1}+\dfrac{1}{1+2}+\,...\,+\dfrac{1}{1+2+\,...\,+n} \right).\)