Tìm nguyên hàm của hàm số \(f\left( x \right) = \cos x\).
A. \(\int {\cos x\,dx} = - \frac{1}{2}{\mathop{\rm s}\nolimits} {\rm{inx}} + C\)
B. \(\int {\cos xdx} = - {\mathop{\rm s}\nolimits} {\rm{inx}} + C\)
C. \(\int {\cos xdx} = \sin 2x + C\)
D. \(\int {\cos xdx} = \sin x + C\)
Lời giải của giáo viên
Ta có: \(\int {\cos xdx} = \sin x + C\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm hệ số của số hạng chứa \(x^8\) trong khai triển Nhị thức Niu tơn của \({\left( {\frac{n}{{2x}} + \frac{x}{2}} \right)^{2n}}\,\,\left( {x \ne 0} \right)\), biết số nguyên dương n thỏa mãn \(C_n^3 + A_n^2 = 50.\)
Giả sử \(\left( {1 + x} \right)\left( {1 + x + {x^2}} \right)...\left( {1 + x + {x^2} + ... + {x^n}} \right) = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_m}{x^m}.\)Tính \(\sum\limits_{r = 0}^m {{a_r}.} \)
Trong mặt phẳng tọa độ Oxy cho vectơ \(\overrightarrow u \left( {3; - 1} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow u \) biến điểm \(M\left( {1; - 4} \right)\) thành
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \(A\left( { - 2;4;1} \right),B\left( {1;1; - 6} \right),C\left( {0; - 2;3} \right).\) Tìm tọa độ trọng tâm G của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, mặt phẳng đi qua điểm \(A\left( {2; - 3; - 2} \right)\)và có một vectơ pháp tuyến \(\overrightarrow n = \left( {2; - 5;1} \right)\) có phương trình là
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng \(60^o\) Tính thể tích của khối chóp S.ABCD theo a.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):2x + 3y + 4z - 12 = 0\) cắt trục Oy tại điểm có tọa độ là:
Biết rằng khi khai triển nhị thức Niutơn \({\left( {\sqrt x + \frac{1}{{2\sqrt[4]{x}}}} \right)^n} = {a_0}.\sqrt {{x^n}} + {a_1}.\sqrt {{x^{n - 1}}} .\frac{1}{{\sqrt[4]{x}}} + {a_2}.{\sqrt x ^{n - 2}}.{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^2} + {a_3}.{\sqrt x ^{n - 3}}.{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^3}...\)(với n là số nguyên lớn hơn 1) thì ba số \({a_0},{a_1},{a_2}\) theo thứ tự lập thành một cấp số cộng. Hỏi trong khai triển trên, có bao nhiêu số hạng mà lũy thừa của x là một số nguyên.
Cho hàm số y = f(x) xác định trên R và có đạo hàm f’(x) thỏa \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right)g\left( x \right) + 2018\) với \(g\left( x \right) < 0,\forall x \in R.\) Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) nghịch biến trên khoảng nào?
Cho hình chóp S.ABC có \(SA = SB = SC = \frac{{a\sqrt 3 }}{2},\) đáy là tam giác vuông tại A, cạnh BC = a. Tính côsin của góc giữa đường thẳng SA và mặt phẳng (ABC)
Phương trình \({\log _x}4.{\log _2}\left( {\frac{{5 - 12x}}{{12x - 8}}} \right) = 2\) có bao nhiêu nghiệm thực?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Tìm m để phương trình f(x) = m có 4 nghiệm phân biệt:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Kẻ OH vuông góc với mặt phẳng (ABC) tại H. Khẳng định nào sau đây là sai?
Tập nghiệm của bất phương trình \({\log _2}\left( {x - 1} \right) > 3\) là