Tính thể tích vật thể giới hạn bởi các mặt phẳng x =0 và x= 1, biết thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoàng độ \(0 \leq x \leq 1\) là một hình vuông có độ dài cạnh \(\sqrt{x (e^{x}-1)}\).
A. \(V=\frac{\pi}{2}\)
B. \(V=\frac{1}{2}\)
C. \(V=\frac{e-1}{2}\)
D. \(V=\frac{\pi(e-1)}{2}\)
Lời giải của giáo viên
Diện tích thiết diện là \(: S(x)=x e^{x}-1\)
Thể tích \(V=\int_{0}^{1} S(x) d x=\int_{0}^{1} x( e^{x}-1) d x\)
Đặt \(\left\{\begin{array}{l} u=x \\ d v=e^{x}-1 d x \end{array} \Rightarrow\left\{\begin{array}{l} d u=d x \\ v=e^{x}-x \end{array}\right.\right.\) ta có:
\(V=x e^{x}-\left.1\right|_{0} ^{1}-\int\limits_{0}^{1} e^{x}-x d x=e-1-\left.\left(e^{x}-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=e-1-\left(e-\frac{1}{2}-1\right)=\frac{1}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz , mặt phẳng đi qua điểm M (1;2;3) và song song với mặt phẳng \((P): x-2 y+z-3=0\) có phương trình là
Trong không gian Oxyz cho mặt cầu (S) có tâm là I (0;0;1) và tiếp xúc với mặt phẳng \((\alpha): 2 x-2 y+z+8=0\) . Phương trình của (S ) là
Tính thể tích V của khối chóp có đáy là hình vuông cạnh bằng 3 và chiều cao bằng 4
Cho lăng trụ tam giác đều \(A B C \cdot A^{\prime} B^{\prime} C^{\prime}\) có độ dài cạnh đáy bằng a, góc giữa đường thẳng AB' và mặt phẳng (ABC) bằng \(60^{\circ} .\) . Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho
Trên mặt phẳng tọa độ, điểm biểu diễn số phức liên hợp của số phức \(z=3+4 i\) là điểm nào dưới dây?
Trong không gian Oxyz , phương trình mặt phẳng trung trực của đoạn thẳng AB với \(A(3 ;-2 ; 1) \text { và } B(1 ; 0 ; 5)\) là:
Tổng số đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2 x-1}{x+1}\)
Cho hình chóp S. ABC có \(S A=S B\,\, và \,\,C A=C B\) . Góc giữa hai đường thẳng SC và AB bằng
Cho x, y, zlà các số thực không âm thoả mãn \(12^{x}+2^{y}+2^{z}=10\) . Giá trị lớn nhất của biểu thức \(P=x+y+3 z\)gần nhất với số nào sau đây?
Trong không gian Oxyz , cho điểm \(A(1 ;-3 ; 2)\) Tọa độ điểm A' đối xứng với A điểm qua mặt phẳng (Oyz) là
Xét số phức z thỏa mãn \((\bar{z}+2 i)(z-2)\)là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biễu diễn các số phức z là một đường tròn có tâm là điểm nào dưới đây?
Cho Hàm số f(x) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số y =f'(x)như hình vẽ bên dưới
Hàm số \(g(x)=f\left(\frac{5 x}{x^{2}+4}\right)\) có bao nhiêu điểm cực đại?
Tìm tập xác định D của hàm số \(y=(2-x)^{\frac{1}{3}}\)
Tính diện tích xung quanh của hình nón có bán kính đáy \(r=\sqrt{3}\) và chiều cao h = 4
Cho hàm số f(x) liên tục trên \(\mathbb{R}\) thỏa mãn \(f(x)=\left\{\begin{array}{ll}
x+m & \text { khi } x \geq 0 \\
c^{2 x} & \text { khi } x<0
\end{array}\right.\) (m là hằng số). Biết \(\int_{-1}^{2} f(x) \mathrm{d} x=a+b . c^{-2}\) . trong đó a b , là các số hữu tỷ. Tính a + b