Trên một cánh đồng có 2 con bò được cột vào 2 cây cọc khác nhau. Biết khoảng cách giữa 2 cọc là 4 mét còn 2 sợi dây cột 2 con bò dài 3 mét và 2 mét. Tính phần diện tích mặt cỏ lớn nhất mà 2 con bò có thể ăn chung.
A. \(2,824{m^2}\)
B. \(1,989{m^2}\)
C. \(1,034{m^2}\)
D. \(1,574{m^2}\)
Lời giải của giáo viên
Gọi \(\left( {{C_1}} \right):{x^2} + {y^2} = 9 \vee \left( {{C_2}} \right):{\left( {x - 4} \right)^2} + {y^2} = 4\) là phương trình hai đường tròn biểu diễn phần ăn cỏ của 2 con bò.
Xét phần phía trên Ox
\(\begin{array}{l} \left( {{C_1}} \right):{x^2} + {y^2} = 9 \Rightarrow y = \sqrt {9 - {x^2}} \\ \left( {{C_2}} \right):{\left( {x - 4} \right)^2} + {y^2} = 4 \Rightarrow y = \sqrt { - {x^2} + 8x - 12} \end{array}\)
Phương trình hoành độ giao điểm \(\sqrt {9 - {x^2}} = \sqrt { - {x^2} + 8x - 12} \Leftrightarrow x = \frac{{21}}{8}\)
Vậy \(S = 2\left[ {\int\limits_2^{\frac{{21}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x + \int\limits_{\frac{{21}}{8}}^3 {\sqrt {9 - {x^2}} } {\rm{d}}x} \right]\)
\(I = \int\limits_{\frac{{21}}{8}}^3 {\sqrt {9 - {x^2}} } {\rm{d}}x\mathop = \limits^{x = 3\sin t} \int\limits_{\arcsin \frac{7}{8}}^{\frac{\pi }{6}} {9{{\cos }^2}t{\rm{d}}t} = 9.\int\limits_{\arcsin \frac{7}{8}}^{\frac{\pi }{6}} {\frac{{\cos 2t + 1}}{2}{\rm{d}}t = \left. {9\left( {\frac{1}{4}\sin 2t + \frac{t}{2}} \right)} \right|} _{\arcsin \frac{7}{8}}^{\frac{\pi }{6}} \approx 0,3679\)
\(J = \int\limits_2^{\frac{{21}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x\mathop = \limits^{x - 4 = 2\sin t} \int\limits_{ - \frac{\pi }{2}}^{\arcsin \left( { - \frac{{11}}{{16}}} \right)} {4{{\cos }^2}t{\rm{d}}t} = 4.\int\limits_{ - \frac{\pi }{2}}^{\arcsin \left( { - \frac{{11}}{{16}}} \right)} {\frac{{\cos 2t + 1}}{2}{\rm{d}}t = \left. {4\left( {\frac{1}{4}\sin 2t + \frac{t}{2}} \right)} \right|} _{ - \frac{\pi }{2}}^{\arcsin \left( { - \frac{{11}}{{16}}} \right)} \approx 0,627\)
\(\Rightarrow S \approx 1,9898\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian tọa độ Oxyz, đường thẳng \(\left( d \right):\frac{x+5}{2}=\frac{y-7}{-8}=\frac{z+13}{9}\) có một véc tơ chỉ phương là
Nghiệm của bất phương trình \({{3}^{x+2}}\ge \frac{1}{9}\) là
Cho phương trình: \({{2}^{{{x}^{3}}+{{x}^{2}}-2x+m}}-{{2}^{{{x}^{2}}+x}}+{{x}^{3}}-3x+m=0\). Tập các giá trị để bất phương trình có ba nghiệm phân biệt có dạng \(\left( a\,;\,b \right)\). Tổng a+2b bằng:
Cho hàm số \(f\left( x \right)=\frac{1}{4}{{x}^{4}}-m{{x}^{3}}+\frac{3}{2}\left( {{m}^{2}}-1 \right){{x}^{2}}+\left( 1-{{m}^{2}} \right)x+2019\) với m là tham số thực. Biết rằng hàm số \(y=f\left( \left| x \right| \right)\) có số điểm cực trị lớn hơn 5 khi \(a<{{m}^{2}}<b+2\sqrt{c}\,\left( a,\,b,\,c\,\in \mathbb{R} \right)\). Tích abc bằng
Giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{{{x}^{2}}-8x}{x+1}\) trên đoạn \(\left[ 1;3 \right]\) bằng
Đường tiệm cận ngang, đường tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x-2}\) lần lượt có phương trình là
Tổ 1 lớp 11A có 6 nam và 7 nữ; tổ 2 có 5 nam và 8 nữ. Chọn ngẫu nhiên mỗi tổ một học sinh. Xác suất để 2 học sinh được chọn đều là nữ là
Trong không gian Oxyz, cho hai điểm \(A\left( 2\,;\,3\,;\,-5 \right), B\left( -4\,;\,1\,;\,3 \right)\). Viết phương trình mặt cầu đường kính AB.
Trong không gian Oxyz, mặt phẳng \(\left( \alpha \right):x-y+2z-3=0\) đi qua điểm nào dưới đây?
Cho tứ diện ABCD có AC=AD và BC=BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?
Giá trị của tích phân \(I=\int\limits_{0}^{1}{\frac{x}{x+1}}\text{d}x\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-4z-25=0\). Tìm tọa độ tâm I và bán kính R của mặt cầu \(\left( S \right)\).
Trong hình vẽ bên, điểm A biểu diễn số phức \({{z}_{1}}\), điểm B biểu diễn số phức \({{z}_{2}}\) sao cho điểm B đối xứng với điểm A qua gốc tọa độ O. Tìm \(\left| z \right|\) biết số phức \(z={{z}_{1}}+3{{z}_{2}}\).
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác đều cạnh bằng a và \(\left( {A}'BC \right)\) hợp với mặt đáy ABC một góc \(30{}^\circ \). Tính thể tích V của khối lăng trụ \(ABC.{A}'{B}'{C}'\).
Trong không gian với hệ tọa độ Oxyz, đường thẳng \(\Delta \) đi qua điểm \(A\left( -2\,;\,4\,;\,3 \right)\) và vuông góc với mặt phẳng \(\left( \alpha \right):\,2x-3y+6z+19=0\) có phương trình là