Câu hỏi Đáp án 2 năm trước 88

Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:

A. \(a - b = 5\)    

B. \(2a + b = 6\)    

C. \(a + 2b = 6\)    

D. \(b - a = 5\)  

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có \(\angle BFC = \angle BEC = {90^0} \Rightarrow \) Tứ giác BEFC nội tiếp đường tròn đường kính BC.

Gọi I là trung điểm của BC \( \Rightarrow IE = IF \Leftrightarrow I{E^2} = I{F^2}\).

Gọi \(I\left( {13 - 7t;t} \right) \in BC\) ta có:

\(\begin{array}{l}I{E^2} = I{F^2} \Leftrightarrow {\left( {11 - 7t} \right)^2} + {\left( {t - 5} \right)^2} = {\left( {13 - 7t} \right)^2} + {\left( {t - 4} \right)^2}\\ \Leftrightarrow 121 - 154t - 10t + 25 = 169 - 182t - 8t + 16\\ \Leftrightarrow 26t = 39 \Leftrightarrow t = \dfrac{3}{2} \Rightarrow I\left( {\dfrac{5}{2};\dfrac{3}{2}} \right)\end{array}\)

Gọi \(B\left( {13 - 7m;m} \right) \in BC\). Vì I là trung điểm của BC \( \Rightarrow C\left( {7m - 8;3 - m} \right)\).

Ta có \(\overrightarrow {BE}  = \left( {7m - 11;5 - m} \right);\,\,\overrightarrow {CE}  = \left( {10 - 7m;2 + m} \right)\).

Ta có: \(\overrightarrow {BE} .\overrightarrow {CE}  = 0 \Leftrightarrow \left( {7m - 11} \right)\left( {10 - 7m} \right) + \left( {5 - m} \right)\left( {2 + m} \right) = 0\)

\( \Leftrightarrow  - 50{m^2} + 150m - 100 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 2\end{array} \right.\)

TH1: \(m = 1 \Rightarrow B\left( {6;1} \right);\,\,C\left( { - 1;2} \right)\)

Khi đó ta có:

\(\overrightarrow {BE}  = \left( { - 4;4} \right)//\left( { - 1;1} \right) \Rightarrow \) Phương trình AC: \( - 1\left( {x - 2} \right) + 1\left( {y - 5} \right) = 0 \Leftrightarrow  - x + y - 3 = 0\).

\(\overrightarrow {CF}  = \left( {1;2} \right) \Rightarrow \) Phương trình AB: \(1\left( {x - 0} \right) + 2\left( {y - 4} \right) = 0 \Leftrightarrow x + 2y - 8 = 0\).

Vì \(A = AB \cap AC \Rightarrow A\left( {\dfrac{2}{3};\dfrac{{11}}{3}} \right) \Rightarrow \left\{ \begin{array}{l}a = \dfrac{2}{3}\\b = \dfrac{{11}}{3}\end{array} \right.\,\,\left( {ktm} \right)\).

TH2: \(m = 2 \Rightarrow B\left( { - 1;2} \right);\,\,\,C\left( {6;1} \right)\).

Khi đó ta có:

\(\overrightarrow {BE}  = \left( {3;3} \right)//\left( {1;1} \right) \Rightarrow \) Phương trình AC: \(1\left( {x - 2} \right) + 1\left( {y - 5} \right) = 0 \Leftrightarrow x + y - 7 = 0\).

\(\overrightarrow {CF}  = \left( { - 6;3} \right)//\left( { - 2;1} \right) \Rightarrow \) Phương trình AB: \( - 2\left( {x - 0} \right) + 1\left( {y - 4} \right) = 0 \Leftrightarrow  - 2x + y - 4 = 0\).

Vì \(A = AB \cap AC \Rightarrow A\left( {1;6} \right) \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 6\end{array} \right. \Rightarrow b - a = 6 - 1 = 5\).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:

Xem lời giải » 2 năm trước 183
Câu 2: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là: 

Xem lời giải » 2 năm trước 87
Câu 3: Trắc nghiệm

Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:

Xem lời giải » 2 năm trước 84
Câu 4: Trắc nghiệm

Hàm số \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 83
Câu 5: Trắc nghiệm

Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là

Xem lời giải » 2 năm trước 83
Câu 6: Trắc nghiệm

Gọi S là tập các giá trị dương của tham số m sao cho hàm số \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| \le 5\). Biết \(S = \left( {a;b} \right]\). Tính \(T = 2b - a\) ?

Xem lời giải » 2 năm trước 82
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của \(m\) để \(\left( P \right) \bot \left( Q \right)\) là:

Xem lời giải » 2 năm trước 81
Câu 8: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

Xem lời giải » 2 năm trước 81
Câu 9: Trắc nghiệm

Tập hợp các giá trị của tham số m để hàm số \(y =| 3{x^4} - 4{x^3} - 12{x^2} + m - 1|\) có 7 điểm cực trị là:

Xem lời giải » 2 năm trước 81
Câu 10: Trắc nghiệm

Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD’, DB sao cho \(AM = DN = x\,\,\left( {0 < x < a\sqrt 2 } \right)\). Khi x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

Xem lời giải » 2 năm trước 79
Câu 11: Trắc nghiệm

Hàm số có đạo hàm bằng  \(2x + \dfrac{1}{{{x^2}}}\) là:

Xem lời giải » 2 năm trước 77
Câu 12: Trắc nghiệm

Đạo hàm của hàm số \(y = \sin \left( {\dfrac{{3\pi }}{2} - 4x} \right)\) là:

Xem lời giải » 2 năm trước 77
Câu 13: Trắc nghiệm

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

Xem lời giải » 2 năm trước 77
Câu 14: Trắc nghiệm

Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:

Xem lời giải » 2 năm trước 77
Câu 15: Trắc nghiệm

Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

Xem lời giải » 2 năm trước 76

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »